1、椭园经典公式1. 点 P 处的切线 PT 平分PF 1F2 在点 P 处的外角.2. PT 平分PF 1F2 在点 P 处的外角,则焦点在直线 PT 上的射影 H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦 PQ 为直径的圆必与对应准线相离.4. 以焦点半径 PF1 为直径的圆必与以长轴为直径的圆内切 .5. 若 在椭圆 上,则过 的椭圆的切线方程是 .0(,)Pxy21xyab0P021xyab6. 若 在椭圆 外 ,则过 Po 作椭圆的两条切线切点为 P1、P 2,则切,2点弦 P1P2 的直线方程是 .02xy7. 椭圆 (ab0)的左右焦点分别为 F1,F 2,点
2、P 为椭圆上任意一点xya,则椭圆的焦点角形的面积为 .12F12tanPSb8. 椭圆 (ab0)的焦半径公式:xy, ( , ).1|Me20|ex1)Fc2(0)0,)Mxy9. 设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相应于焦点 F 的椭圆准线于 M、N 两点,则 MFNF.10. 过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A 2 为椭圆长轴上的顶点,A 1P 和A2Q 交于点 M,A 2P 和 A1Q 交于点 N,则 MFNF.11. AB 是椭圆 的不平行于对称轴的弦,M 为 AB 的中点,则xyab),(0yx,2OMABk即 。02yaxK12. 若 在椭圆 内,则被 Po 所平分的中点弦的方程是0(,)P21b.022xxab13. 若 在椭圆 内,则过 Po 的弦中点的轨迹方程是0(,)y21yab.202xyab