1、 PAOO PBAO P主备人:王立才 二备人 :石志霞 三备人:吴军 四备人:李观银 备课组长签名 课型:新授 设计课时: 1 课时 审核人签名 班级 : 学生姓名 : 家长签名: 执教人签名: 学习目标 了解切线长的概念,经历探索切线长性质过程,并用这个性质解决有关问题。学习重点来源:学.科.网运用切线长的性质解决有关问题。学习难点 运用切线长的性质解决有关问题。一、课前预习:1.如图,点 A 在O 上,P 是O 外一点,OAP 90,则 PA 是O 的切线吗?为什么?2.如图,过O 外一点 P 画O 的切线,这样的切线能做几条?试一试!3. 如图,已知 P A、PB 是O 的两条切线,切
2、点分别为 A、B,沿射线 PO 将图形折叠,你发现了 什么?你能 说明原因吗?来源:学科网二、 教学过程(一)、新知导学1.引出圆的切线长定义。切线长: 2.探究课前练 习 33.归纳切线长定理。切线长定理 (二)、例题教学例 1 如图,PA、PB 是O 的切线,A 、B 为切点,直线 OP 交O 于点D、E,交 AB 于 C(1)AD 与 BD 是否相等?为什么?批注/记录 C BAoEDCBAO PDPBCA(2)OP 与 AB 有怎样的位置关系?为什么?例 2 如图,在 RtABC 中, ,AB=c,AC=b,BC=a 。90C探究:ABC 的内切圆O 的半径 r 与 a、b、c 的数量
3、关系。来源:学科网例 3 已知,如图,PA 、PB 是O 的两条切线,切点分别为 A、B,直线 DE切O 于点 C,分别交 PA、PB 于点 D、E,若APB60,O 的半径为1,试求PDE 的周长。三、 课堂检测1. 如图 1,AB 切O 于 P,AC 切O 于 C,BD 切O 于 D,若AB=5cm,AC=3cm,则 BD cm。来源:Z.xx.k.Com2.RtABC 中, 则ABC 的内切圆半径9068CABC, ,OBAP_r3.,PA、PB 是O 的切线,切点分别为 A、B,APB60,O 的半径为2cm,则(1)APO ,BOP ,(2)OP cm,AP cm ,BP cm,(3
4、)ABP 的周长 cm。4.已知,如图,AB/CD,直线 AB、BC、CD 分别与O 相切于点 E、F、G 。(1) 求 证:BOC90;来源:学,科,网 Z,X,X,K(2) 若 BE=4,CG=9, 试求O 的半径。四、课后巩固1、在等腰ABC 中,AB=AC=5 ,BC=6,则ABC 内切圆半径为 。2、一个钢管放在 V 形架内,右图是其截面图, O 为钢管的圆心如果钢管的半径为 25 cm,MPN = 60,则 OP =( )A50 cm B25 3cm C 350cm D50 3cm3、如图,PA、PB 是O 的切线, A、B 为切点,OAB30APB= ; 当 OA3 时,AP= 。PBAODF ECBAo4. 如图, 中, ,以 为直径的 交 于点 ,RtABC 90ABO ACD过点 的切线交 于 求证: ;DE12DC5.如图,ABC 外切于O,切点分别为 D、E、F, A=60,BC=7, O 的半径为 ,求ABC 的周长。43六、课后反思 附件 1:律师事务所反盗版维 权声明附件 2:独家资源交 换签约 学校名录(放大查看)学校名录 参见 :http:/ Z&X&X&K