1、LCD 液晶显示器 Liquid Crystal Display 摘要:液晶显示器(LCD)英文全称为 Liquid Crystal Display,它一种是采用了液晶控制透光度技术来实现色彩的显示器。它包含了液晶技术、显示技术、反应速度、耗电量、显示色彩、传统工艺等内容。Abstract:LCDs full name is called Liquid Crystal Display. Its a kind of the display that using a liquid crystal control light transmission technology to achieve co
2、lor.It includes Liquid Crystal technology、Display technology、Reaction speed 、Power consumption、Color display and Traditional crafts and so on. 关键字:液晶、显示器 Keyword: Liquid Crystal 、displayLCD 的基本介绍: 液晶显示器(LCD)英文全称为 Liquid Crystal Display,它一种是采用了液晶控制透光度技术来实现色彩的显示器。由于通过控制是否透光来控制亮和暗,当色彩不变时,液晶也保持不变,这样就无须考
3、虑刷新率的问题。对于画面稳定、无闪烁感的液晶显示器,刷新率不高但图像也很稳定。LCD 显示器还通过液晶控制透光度的技术原理让底板整体发光,所以它做到了真正的完全平面。 一些高档的数字 LCD 显示器采用了数字方式传输数据、显示图像,这样就不会产生由于显卡造成的色彩偏差或损失。并且完全没有辐射,即使长时间观看 LCD 显示器屏幕也不会对眼睛造成很大伤害。体积小、能耗低,一般一台 15 寸 LCD 显示器的耗电量也就相当于 17 寸纯平 CRT 显示器的三分之一。 目前相比 CRT 显示器, LCD 显示器图像质量仍不够完善。色彩表现、饱和度、色域和响应时间上 LCD 显示器都在不同程度上输给了
4、CRT 显示器。但是随着 LCD 技术的不断进步,响应时间问题已经基本解决,市场上如华硕、三星、LG、戴尔、飞利浦等一线显示器品牌旗下产品的响应时间普遍都在 5ms 以下,甚至 1ms 响应时间的显示器也并不是什么新鲜事,基本上避免了使用中拖影现象的发生。并且色彩、色域表现更加出色的 IPS 面板已经开始逐渐在“平民级”显示器中应用,如今的 LCD 显示器从普通用户的角度来看,已经完全取代了 CRT 成为了当下主流的显示设备。LCD 的历史: LCD(Liquid Crystal Display )在 1888 年,一位奥地利的植物学家 F.Renitzer 便发现了液晶特殊的物理特性。 在
5、85 年之后,这一发现才产生了商业价值,1973 年日本的夏普公司首次将它运用于制作电子计算器的数字显示。现在,LCD 是笔记型计算机和掌上计算机的主要显示设备,在投影机中,它也扮演着非常重要的角色,而且它开始逐渐渗入到桌面显示器市场中。LCD 的工作原理: 从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的 LCD 显示屏都是由不同部分组成的分层结构。LCD 由两块玻璃板构成,厚约 1mm,其间由包含有液晶材料的 5m 均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射
6、光线,其作用主要是提供均匀的背景光源。 背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万液晶液滴的液晶层。液晶层中的液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当 LCD 中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 液晶显示技术也存在弱点和技术瓶颈,与 CRT 显示器相比亮度、画面均匀度、可视
7、角度和反应时间上都存在明显的差距。其中反应时间和可视角度均取决于液晶面板的质量,画面均匀度和辅助光学模块有很大关系。 对于液晶显示器来说,亮度往往和他的背板光源有关。背板光源越亮,整个液晶显示器的亮度也会随之提高。而在早期的液晶显示器中,因为只使用 2 个冷光源灯管,往往会造成亮度不均匀等现象,同时明亮度也不尽人意。一直到后来使用 4 个冷光源灯管产品的推出,才有很大的改善。 信号反应时间也就是液晶显示器的液晶单元响应延迟。实际上就是指的液晶单元从一种分子排列状态转变成另外一种分子排列状态所需要的时间,响应时间愈小愈好,它反应了液晶显示器各像素点对输入信号反应的速度,即屏幕由暗转亮或由亮转暗的
8、速度。响应时间越小则使用者在看运动画面时不会出现尾影拖拽的感觉。有些厂商会通过将液晶体内的导电离子浓度降低来实现信号的快速响应,但其色彩饱和度、亮度、对比度就会产生相应的降低,甚至产生偏色的现象。这样信号反应时间上去了,但却牺牲了液晶显示器的显示效果。有些厂商采用的是在显示电路中加入了一片 IC 图像输出控制芯片,专门对显示信号进行处理的方法来实现的。IC 芯片可以根据 VGA 输出显卡信号频率,调整信号响应时间。由于没有改变液晶体的物理性质,因此对其亮度、对比度、色彩饱和度都没有影响,这也是为什么华硕、三星、LG 等技术型厂商的液晶产品画面效果更好的原因,但是这种方法的制造成本也相对较高。
9、由上便可看出,液晶面板的质量并不能完全代表液晶显示器的品质,没有出色的显示电路配合,再好的面板也不能做出性能优异的液晶显示器。随着 LCD 产品产量的增加、成本的下降,液晶显示器会大量普及。 液晶的介绍: 液晶得名于其物理特性:它的分子晶体,不过以液态存在而非固态。大多数液晶都属于有机复合物。这些晶体分子的液体特性使得它具有两种非常有用的特点:如果你让电流通过液晶层,这些分子将会以电流的流向方向进行排列,如果没有电流,它们将会彼此平行排列。如果你提供了带有细小沟槽的外层,将液晶倒入后,液晶分子会顺着槽排列,并且内层与外层以同样的方式进行排列 .液晶的第三个特性是很神奇的:液晶层能够使光线发生扭
10、转。液晶层表现的有些类似偏光器,这就意味着它能够过滤掉除了那些从特殊方向射入之外的所有光线。此外,如果液晶层发生了扭转,光线将会随之扭转,以不同的方向从另外一个面中射出。液晶的这些特点使得它可以被用来当作一种开关-即可以阻碍光线,也可以允许光线通过。液晶单元的底层是由细小的脊构成的,这些脊的作用是让分子呈平行排列。上表面也是如此,在这两侧之间的分子平行排列,不过当上下两个表面之间呈一定的角度时,液晶成了随着两个不同方向的表面进行排列,就会发生扭曲。结果便是这个扭曲了的螺旋层使通过的光线也发生扭曲。如果电流通过液晶,所有的分子将会按照电流的方向进行排列,这样就会消除光线的扭转。如果将一个偏振滤光
11、器放置在液晶层的上表面,扭转的光线通过了,而没有发生扭转的光线将被阻碍。因此可以通过电流的通断改变 LCD 中的液晶排列,使光线在加电时射出,而不加电时被阻断。也有某些设计了省电的需要,有电流时,光线不能通过,没有电流时,光线通过。 LCD 的显示: 显示技术由于不同的应用目的而分成不同的类型。有的是成了静态显示,比如道路标志和显示牌,它们的显示信息是不变的。平面显示技术则被用于传递发生变化的显示信息,所以显示信息量的大小就决定了所采用的显示技术类型。对于便携式的计算器等设备而言,由于所传递的信息量相对较低,被称为低信息密度显示技术;对于计算机显示器而言,由于传递的信息量大,则相应被称为高信息
12、密度显示技术。1、被动矩阵液晶显示技术 高信息密度显示技术中首先商品化的是被动矩阵显示技术 。它得名于控制液晶单元的开和关的简单设计。 被动矩阵液晶显示的驱动方式是由垂直与水平方向的电极所构成,单独的液晶单元夹在彼此垂直的电极中间。因此,任何一组电极的驱动就会在特定的单元中引起电流通过。 被动矩阵显示画面的原理就是输入的信号依次去驱动每一排的电极,于是当某一排被选定的时候,列向上的电极将被触发打开位于排和列交叉上的那些像素。这种方法比较简单,而且对液晶屏幕的成本增加也不多。不过它也有缺点,如果有太大的电流通过某个单元,附近的单元都会受到影响,引起虚影。如果电流太小,单元的开和关就会变得迟缓,降
13、低对比度和丢失移动画面的细节。2、主动矩阵 LCD被动矩阵 LCD 的最大问题是难以快速地控制单独的液晶单元,并以足够大的电流保证来获得好的对比度、足够的灰阶级和较快的响应时间,从而影响了动态影像的显示效果。主动矩阵 LCD 通过单独地控制每个单元,有效地解决了上面的问题。 与被动矩阵 LCD 相似,主动矩阵 ( Active Matrix ) LCD 的上下表层也纵横有序排列着用铟锡氧化物做成的透明电极。所不同的是在每个单元中都加入了很小的晶体管,由晶体管来控制电流的开和关。晶体管电极是利用薄膜技术而做成的。晶体管利用了薄膜来形成半导体。薄膜晶体管 LCD ( TFT-LCD)也因此得名。
14、晶体管可以迅速地控制每个单元,由于单元之间的电干扰很小,所以你可以使用大电流,而不会有鬼影和拖尾现象。更大的电流会提供更好的对比度、更锐利的和更明亮的图像。反应速度 : LCD 单元在控制信号到达与变化完成之间存在滞后现象,这使得 LCD 在显示快速移动图像时与 CRT 相比具有一种先天的缺陷。 CRT 的电子枪发射电子束到被激发的荧光粉发光之间几乎是瞬间的。 这种时间滞后被称反应时间 ,其单位通常是毫秒。被动矩阵显示器响应时间很长,约有 150 毫秒或更多,所以不适于显示诸如电影的移动画面。 在主动矩阵显示器中像素响应时间随设计的不同而异,主要受到几个因素影响,包括用来驱动单元的电压,单元的
15、厚度和使用的液晶材料。标准的主动矩阵显示器一般有 40 毫秒的响应时间,也就是说每秒能显示 25 帧。平面内转换增加了可视角度,但显示会变慢,一般有 70 毫秒反应时间。显示器更快一些,有 25 毫秒反应时间。耗电量 : 主动矩阵式 LCD 显示器与 CRT 相比较小,需要很少的电量。事实上,它已经变成了便携式设备的标准显示器,从 PDA 到笔记型计算机均广泛运用。但不管怎样, LCD 技术还是可悲的效率低下:即使你将屏幕显示白色,从背景光源中发射的光也只有不到 10% 穿过屏幕发出,其它的都被吸收。 笔记型计算机的低效迫使其设计者面临一些艰难的选择。如果你希望在户外这样强光环境下图像更明亮,
16、你就需要一个更亮的背景光源,这将需要更多的电力。如果你使用的电池容量一定,更亮的背景光源就会在较短的时间内耗尽电源。 设计者用更大的电池容量解决这个问题,但是对于目前的电池技术来说,就意味着设备重量的增加,对消费者的吸引力就会下降。这三者之间的三角平衡推动着显示器、电池及节能技术的研究。 总而言之,背景光源所哪芰渴?span lang=“EN-US“ LCD 显示器总耗电量的最大部分。更大的屏幕、更高的亮度和更高的分辨率都将使笔记型计算机显示器的耗电量大大增加。另一方面,技术进步通过降低系统电压和提高孔径比使更多的光能通过液晶单元,降低系统的电源需求。结果是,笔记型显示器的总耗电量维持在 2
17、到 5 瓦之间。一根管子的背景光源大约需要 1.2 瓦,所以根据使用一只或两只管子一个屏幕中共需要 1.2 或 2.4 瓦的能量。PDA,如 Palm 和 Compaq iPAQ 常使用反射显示器。这意味着环境光射进显示器中,穿过极化的液晶层,碰撞反射层,再反射出来显示成图像。据估计,在此过程中 84% 的光被吸收,所以只有六分之一的光起作用,虽然还有待改进,但已足以提供可视影像需要的对比度。单向反射和反射显示器使得不同光照条件下耗费最少能源使用 LCD 显示器成为可能。 LCD 显示器的关键因素之一是它的价格。如果比 CRT 更加便宜,它将会占据几乎全部的显示器市场。但不幸的是,对于桌上计算
18、机经常使用的 15、17 吋显示器来说,相同显示面积的 LCD 的造价几乎是 CRT 的 3 到 5 倍。显示面积越大,造价差距越大。为什么LCD 造价如此之高?这取决于它们的制造方式。它的制造工艺异常复杂,维持高良率需要不断努力。 显示色彩 : LCD 显示的一个重要的技术指标是显示色彩。 CRT 显示器所能表现出的色彩几乎是无穷的,因为它是模拟设备。只需改变红绿蓝三种模拟信号的强度,你就可以得到不同的色彩。与 CRT 一样, LCD 技术也是根据电压的大小来改变亮度,但是只有主动矩阵 LCD 可以单独控制每个像素,被动矩阵 LCD 每次都要驱动整行或整列像素,因此它的灰阶表现能力很差。 每
19、个 LCD 的子像素显示的颜色取决于色彩过滤器。由于液晶本身没有颜色,所以用滤色片产生各种颜色,而不是子像素,子像素只能通过控制光线的通过强度来调节灰阶,只有少数主动矩阵显示采用模拟信号控制,大多数则采用数字信号控制技术。大部分数字控制的 LCD 都采用了 8 位控制器,可以产生 256 级灰阶。每个子像素能够表现 256 级,那么你就能够得到 2563 种色彩,每个像素能够表现 16,777,216 种成色。因为人的眼睛对亮度的感觉并不是线性变化的,人眼对低亮度的变化更加敏感,所以这种 24 位的色度并不 1 能完全达到理想要求。工程师们通过脉冲电压调节的方法以使色彩变化看起来更加统一。 制
20、造商还采用了两种技术来提高主动矩阵显示中每个液晶单元的灰阶显示数目。第一种是抖动方法。将四个毗连呈正方形的像素作为一个单元,如果其中一个的灰阶太低,那么相邻的像素就会提高自身的亮度,从而显示出一个比较适中的灰阶,四个像素最后会显示出三个适中的最终灰阶作为显示结果。这种方法的最大缺点在于降低了显示的分辨率。 另一项技术是框架速率控制(FRC )或者暂时的高频振动。这种方法在显示每屏图像时多次刷新像素。与高频振动中将灰阶的混合用空间来显示不同,这种方法通过时间控制。如果显示一幅画面需要的时间分为很多帧,像素就可以在帧的切换当中造成一种灰阶的过渡态,四帧就可以造成三个过渡态。这种设计的优点是可以不降
21、低图像的分辨率,被广泛应用于现代的主动矩阵显示器中。传统工艺流程:LCD 的面板最早使用非常薄的玻璃制造。大约只有 1.1-0.4 毫米厚,由于玻璃生产中,设备不同会造成玻璃厚度不同。所以,显示器只能在一套模具中制造。玻璃底层镀有一层非晶硅,从而在每个像素单元上可以制造半导体组件。经过一系列的平板照相、蚀刻、覆膜和沈积步骤,在每个像素上都生成了开关晶体管、滤色器及其它部分。 在所有的元器件上沉积有一个透明数组膜,在顶层上贴上另一个相似的透明的数组膜。这些膜运用光化学工艺流程进行刻蚀或印刷,在每层膜上形成极小的刻槽。当液晶材料注入时,液晶分子就在这些槽中有序排列。在屏幕的两面间喷洒小隔片,保证在
22、每个像素位置上有一到两个隔片。这样就可以分隔开玻璃层的上下面,为液晶材料提供一个存在的空间。接着,在每个显示器的 LCD 技术中最引人瞩目的是低温多晶硅的使用。传统工艺中使用非晶硅制造 LCD 单元元器件,相对来说制造成本较低,但是比半导体芯片制造所使用的单晶硅的电子活性较低。电子活性随着硅结晶度的提高而增加,这样晶体管就可以越来越小,而这又意味着更大的孔径比 - 更多光线将通过液晶显示器单元 - 所以显示器耗电量更低,也就是说电池使用寿命将延长或整机重量降低。多晶硅用于小型 LCD 显示器 - 例如数据读取设备中的面板 - 但它们都需要可抵抗高温的特殊玻璃。覆盖在底层的硅被加热到一定温度然后
23、冷却,从而产单晶硅。 结论:近几年,技术已经发展到了可以制造标准的玻璃底层和在室温下制造晶体硅。使用激光扫描硅膜,可以使膜表面特定的极小区域产生高温,冷却后生成单晶硅。这种工艺比传统的镀膜更加昂贵,但是它带来了一些其它的利益。除了孔径比增加之外,多晶硅层的使用使得在面板的边缘构造驱动电路成为可能。从而大部分与电路的接头能够无需接片(TAB)就能够在底层很好的实现连接。这就意味着连接到面板上的接头数目减少 95 以上,而且同时增加显示的物理可靠性。进入 21 世纪的今天,以大型电视、手机为中心,移动领域等的市场不断扩大,液晶显示正在向着更大产业化飞跃。参考文献: 1 卢官明,等. 数字电视原理 2 版. 北京:机械工业出版社, 2008.2 李雄杰,等.平板电视技术m. 北京:电子工业出版社,2007.