收藏 分享(赏)

LCD液晶显示器原理.doc

上传人:精品资料 文档编号:10899369 上传时间:2020-01-19 格式:DOC 页数:17 大小:567KB
下载 相关 举报
LCD液晶显示器原理.doc_第1页
第1页 / 共17页
LCD液晶显示器原理.doc_第2页
第2页 / 共17页
LCD液晶显示器原理.doc_第3页
第3页 / 共17页
LCD液晶显示器原理.doc_第4页
第4页 / 共17页
LCD液晶显示器原理.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、TFT LCD 液晶显示器原理液晶显示器是什么? 只好随着不同的应用环境 , 来解释给人家听 . 在最早的时候是告诉人家, 就是掌上型电动玩具上所用的显示屏, 随着笔记型计算机开始普及, 就可以告诉人家说, 就是使用在笔记型计算机上的显示器. 随着手机的流行, 又可以告诉人家说, 是使用在手机上的显示板. 时至今日, 液晶显示器, 对于一般普罗大众, 已经不再是生涩的名词. 而它更是继半导体后 另一种可以再创造大量营业额的新兴科技产品, 更由于其轻薄的特性, 因此它的应用范围比起原先使用阴极射线管(CRT, cathode-ray tube)所作成的显示器更多更广. 如同我前面所提到的, 液晶

2、显示器泛指一大堆利用液晶所制作出来的显示器. 而今日对液晶显示器这个名称, 大多是指使用于笔记型计算机, 或是桌上型计算机应用方面的显示器. 也就是薄膜晶体管液晶显示器. 其英文名称为 Thin-film transistor liquid crystal display, 简称之 TFT LCD. 从它的英文名称中我们可以知道 , 这一种显示器它的构成主要有两个特征, 一个是薄膜晶体管, 另一个就是液晶本身. 我们先谈谈液晶本身. 液晶(LC, liquid crystal)的分类 我们一般都认为物质像水一样都有三态, 分别是固态液态跟气态. 其实物质的三态是针对水而言, 对于不同的物质,

3、可能有其它不同的状态存在. 以我们要谈到的液晶态而言, 它是介于固体跟液体之间的一种状态, 其实这种状态仅是材料的一种相变化的过程(请见图 1), 只要材料具有上述的过程, 即在固态及液态间有此一状态存在, 物理学家便称之为液态晶体. 这种液态晶体的首次发现, 距今已经度过一百多个年头了 . 在公元 1888 年, 被奥地利的植物学家 Friedrich Reinitzer 所发现 , 其在观察从植物中分离精制出的安息香酸胆固醇(cholesteryl benzoate) 的融解行为时发现, 此化合物加热至 145.5 度时, 固体会熔化,呈现一种介于固相和液相间之半熔融流动白浊状液体. 这种

4、状况会一直维持温度升高到 178.5 度, 才形成清澈的等方性液态(isotropic liquid). 隔年, 在 1889 年, 研究相转移及热力学平衡的德国物理学家 O.Lehmann, 对此化合物作更详细的分析. 他在偏光显微镜下发现, 此黏稠之半流动性白浊液体化合物,具有异方性结晶所特有的双折射率(birefringence) 之光学性质, 即光学异相性(optical anisotropic). 故将这种似晶体的液体命名为液晶. 此后, 科学家将此一新发现的性质, 称为物质的第四态- 液晶(liquid crystal). 它在某一特定温度的范围内, 会具有同时液体及固体的特性.

5、一般以水而言, 固体中的晶格因为加热, 开始吸热而破坏晶格, 当温度超过熔点时便会溶解变成液体. 而热致型液晶则不一样( 请见图 2), 当其固态受热后, 并不会直接变成液态, 会先溶解形成液晶态. 当您持续加热时 , 才会再溶解成液态( 等方性液态). 这就是所谓二次溶解的现象. 而液晶态顾名思义, 它会有固态的晶格, 及液态的流动性. 当液态晶体刚发现时, 因为种类很多, 所以不同研究领域的人对液晶会有不同的分类方法. 在 1922 年由 G. Friedel 利用偏光显微镜所观察到的结果 , 将液晶大致分为 Nematic Smectic 及 Cholesteric 三类. 但是如果是依

6、分子排列的有序性来分(请见图 3), 则可以分成以下四类 : 1.层状液晶(Sematic) : 其结构是由液晶棒状分子聚集一起, 形成一层一层的结构. 其每一层的分子的长轴方向相互平行. 且此长轴的方向对于每一层平面是垂直或有一倾斜角. 由于其结构非常近似于晶体, 所以又称做近晶相. 其秩序参数 S(order parameter)趋近于 1. 在层状型液晶层与层间的键结会因为温度而断裂 ,所以层与层间较易滑动. 但是每一层内的分子键结较强, 所以不易被打断. 因此就单层来看, 其排列不仅有序且黏性较大. 如果我们利用巨观的现象来描述液晶的物理特性的话, 我们可以把一群区域性液晶分子的平均指

7、向定为指向矢(director), 这就是这一群区域性的液晶分子平均方向. 而以层状液晶来说, 由于其液晶分子会形成层状的结构, 因此又可就其指向矢的不同再分类出不同的层状液晶. 当其液晶分子的长轴都是垂直站立的话, 就称之为“Sematic A phase“. 如果液晶分子的长轴站立方向有某种的倾斜(tilt) 角度,就称之为“Sematic C phase“. 以 A,C 等字母来命名, 这是依照发现的先后顺序来称呼 , 依此类推, 应该会存在有一个“Sematic B phase“才是. 不过后来发觉 B phase 其实是 C phase 的一种变形而已, 原因是 C phase 如果

8、带 chiral 的结构就是 B phase. 也就是说 Chiral sematic C phase 就是 Sematic B phase(请见图 4). 而其结构中的一层一层液晶分子, 除了每一层的液晶分子都具有倾斜角度之外, 一层一层之间的倾斜角度还会形成像螺旋的结构. 2.线状液晶(Nematic) : Nematic 这个字是希腊字, 代表的意思与英文的 thread 是一样的. 主要是因为用肉眼观察这种液晶时, 看起来会有像丝线一般的图样. 这种液晶分子在空间上具有一维的规则性排列, 所有棒状液晶分子长轴会选择某一特定方向(也就是指向矢) 作为主轴并相互平行排列. 而且不像层状液晶

9、一样具有分层结构. 与层列型液晶比较其排列比较无秩序, 也就是其秩序参数S 较层状型液晶较小. 另外其黏度较小, 所以较易流动(它的流动性主要来自对于分子长轴方向较易自由运动)。线状液晶就是现在的 TFT 液晶显示器常用的 TN(Twisted nematic)型液晶. 3.胆固醇液晶(cholesteric) : 这个名字的来源,是因为它们大部份是由胆固醇的衍生物所生成的. 但有些没有胆固醇结构的液晶也会具有此液晶相. 这种液晶如图 5 所示, 如果把它的一层一层分开来看, 会很像线状液晶. 但是在 Z 轴方向来看, 会发现它的指向矢会随着一层一层的不同而像螺旋状一样分布, 而当其指向矢旋转

10、 360 度所需的分子层厚度就称为 pitch. 正因为它每一层跟线状液晶很像,所以也叫做 Chiral nematic phase. 以胆固醇液晶而言, 与指向矢的垂直方向分布的液晶分子, 由于其指向矢的不同, 就会有不同的光学或是电学的差异, 也因此造就了不同的特性. 4.碟状液晶(disk) : 也称为柱状液晶, 以一个个的液晶来说, 它是长的像碟状(disk), 但是其排列就像是柱状(discoid). 如果我们是依分子量的高低来分的话则可以分成高分子液晶(polymer liquid crystal, 聚合许多液晶分子而成)与低分子液晶两种. 就此种分类来说 TFT 液晶显示器是属于

11、低分子液晶的应用. 倘若就液晶态的形成原因, 则可以分成因为温度形成液晶态的热致型液晶(thermotropic),与因为浓度而形成液晶态的溶致型液晶(lyotropic). 以之前所提过的分类来说, 层状液晶与线状液晶一般多为热致型的液晶, 是随着温度变化而形成液晶态. 而对于溶致型的液晶, 需要考虑分子溶于溶剂中的情形. 当浓度很低时, 分子便杂乱的分布于溶剂中而形成等方性的溶液, 不过当浓度升高大于某一临界浓度时, 由于分子已没有足够的空间来形成杂乱的分布, 部份分子开始聚集形成较规则的排列, 以减少空间的阻碍. 因此形成异方性(anisotropic)之溶液. 所以溶致型液晶的产生就是

12、液晶分子在适当溶剂中 达到某一临界浓度时,便会形成液晶态. 溶致型的液晶有一个最好的例子,就是肥皂. 当肥皂泡在水中并不会立刻便成液态, 而其在水中泡久了之后, 所形成的乳白状物质, 就是它的液晶态. 液晶的光电特性 由于液晶分子的结构为异方性 (Anisotropic),所以所引起的光电效应就会因为方向不同而有所差异,简单的说也就是液晶分子在介电系数及折射系数等等光电特性都具有异方性,因而我们可以利用这些性质来改变入射光的强度, 以便形成灰阶, 来应用于显示器组件上. 以下我们要讨论的, 是液晶属于光学跟电学相关的特性, 大约有以下几项: 1.介电系数 (dielectric permitt

13、ivity) : 我们可以将介电系数分开成两个方向的分量, 分别是 / (与指向矢平行的分量)与 (与指向矢垂直的分量). 当 / 便称之为介电系数异方性为正型的液晶, 可以用在平行配位. 而 / 0 .所以双折射率 n 0 ,我们把它称做是光学正型的液晶, 而层状液晶与线状液晶几乎都是属于光学正型的液晶. 倘使光的行进方向平行于长轴时的速度较快的话,代表平行长轴方向的折射率小于垂直方向的折射率,所以双折射率 n ,代表着平行方向的介电系数比垂直方向的介电系数大, 因此当液晶分子受电场影响时, 其排列方向会倾向平行于电场方向.), 所以我们从图 10 中便可以看到, 液晶分子的排列都变成站立着

14、的. 此时通过上层偏光板的单方向的极化光波, 经过液晶分子时便不会改变极化方向, 因此就无法通过下层偏光板. Normally white 及 normally black 所谓的 NW(Normally white),是指当我们对液晶面板不施加电压时, 我们所看到的面板是透光的画面, 也就是亮的画面, 所以才叫做 normally white. 而反过来, 当我们对液晶面板不施加电压时, 如果面板无法透光, 看起来是黑色的话, 就称之为 NB(Normally black). 我们刚才所提到的图 9 及图 10 都是属于 NW 的配置, 另外从图 11 我们可以知道, 对 TN 型的 LCD

15、 而言, 位于上下玻璃的配向膜都是互相垂直的, 而 NB 与 NW 的差别就只在于偏光板的相对位置不同而已. 对 NB 来说, 其上下偏光板的极性是互相平行的. 所以当 NB 不施加电压时, 光线会因为液晶将之旋转 90 度的极性而无法透光. 为什么会有 NW 与 NB 这两种不同的偏光板配置呢? 主要是为了不同的应用环境 . 一般应用于桌上型计算机或是笔记型计算机, 大多为 NW 的配置. 那是因为, 如果你注意到一般计算机软件的使用环境, 你会发现整个屏幕大多是亮点, 也就是说计算机软件多为白底黑字的应用. 既然亮着的点占大多数, 使用 NW 当然比较方便. 也因为 NW 的亮点不需要加电

16、压 , 平均起来也会比较省电. 反过来说 NB 的应用环境就大多是属于显示屏为黑底的应用了. STN(Super Twisted Nematic)型 LCD STN LCD 与 TN 型 LCD 在结构上是很相似的, 其主要的差别在于 TN 型的 LCD,其液晶分子的排列, 由上到下旋转的角度总共为 90 度. 而 STN 型 LCD 的液晶分子排列, 其旋转的角度会大于 180 度, 一般为 270 度.(请见图 12) 正因为其旋转的角度不一样, 其特性也就跟着不一样. 我们从图 13 中 TN 型与 STN 型 LCD 的电压对穿透率曲线可以知道 , 当电压比较低时, 光线的穿透率很高.

17、 电压很高时, 光线的穿透率很低. 所以它们是属于 Normal White 的偏光板配置. 而电压在中间位置的时候, TN 型 LCD 的变化曲线比较平缓, 而 STN 型LCD 的变化曲线则较为陡峭. 因此在 TN 型的 LCD 中, 当穿透率由 90%变化到 10%时, 相对应的电压差就比 STN 型的 LCD 来的较大. 我们前面曾提到 , 在液晶显示器中, 是利用电压来控制灰阶的变化. 而在此 TN 与 STN 的不同特性, 便造成 TN 型的 LCD,先天上它的灰阶变化就比 STN 型的 LCD 来的多. 所以一般 TN 型的 LCD 多为 68 bits 的变化, 也就是 642

18、56 个灰阶的变化. 而 STN 型的 LCD 最多为 4 bits 的变化 也就只有 16 阶的灰阶变化. 除此之外 STN 与 TN 型的 LCD 还有一个不一样的地方就是反应时间(response time) 一般 STN 型的 LCD 其反应时间多在 100ms 以上 而 TN 型的 LCD 其反应时间多为 3050ms 当所显示的影像变动快速时 对 STN 型的 LCD 而言 就容易会有残影的现象发生 TFT LCD(Thin film transistor liquid crystal display) TFT LCD 的中文翻译名称就叫做薄膜晶体管液晶显示器, 我们从一开始就提到

19、 液晶显示器需要电压控制来产生灰阶. 而利用薄膜晶体管来产生电压,以控制液晶转向的显示器, 就叫做 TFT LCD. 从图 8 的切面结构图来看, 在上下两层玻璃间, 夹着液晶, 便会形成平行板电容器, 我们称之为 CLC(capacitor of liquid crystal). 它的大小约为 0.1pF, 但是实际应用上, 这个电容并无法将电压保持到下一次再更新画面数据的时候. 也就是说当 TFT 对这个电容充好电时, 它并无法将电压保持住, 直到下一次 TFT 再对此点充电的时候.(以一般 60Hz 的画面更新频率, 需要保持约 16ms 的时间.) 这样一来 , 电压有了变化, 所显示

20、的灰阶就会不正确. 因此一般在面板的设计上, 会再加一个储存电容 CS(storage capacitor 大约为 0.5pF), 以便让充好电的电压能保持到下一次更新画面的时候. 不过正确的来说, 长在玻璃上的 TFT 本身,只是一个使用晶体管制作的开关 . 它主要的工作是决定 LCD source driver 上的电压是不是要充到这个点来. 至于这个点要充到多高的电压 , 以便显示出怎样的灰阶. 都是由外面的 LCD source driver 来决定的. 彩色滤光片(color filter, CF) 如果你有机会, 拿着放大镜, *近液晶显示器的话. 你会发现如图 9 中所显示的样子

21、. 我们知道红色, 蓝色以及绿色, 是所谓的三原色. 也就是说利用这三种颜色, 便可以混合出各种不同的颜色. 很多平面显示器就是利用这个原理来显示出色彩. 我们把 RGB 三种颜色, 分成独立的三个点, 各自拥有不同的灰阶变化, 然后把邻近的三个 RGB 显示的点, 当作一个显示的基本单位, 也就是 pixel. 那这一个 pixel,就可以拥有不同的色彩变化了. 然后对于一个需要分辨率为 1024*768 的显示画面, 我们只要让这个平面显示器的组成有 1024*768 个 pixel, 便可以正确的显示这一个画面. 在图 9 中,每一个 RGB 的点之间的黑色部分, 就叫做 Black m

22、atrix. 我们回过头来看图 8 就可以发现, black matrix 主要是用来遮住不打算透光的部分. 比如像是一些 ITO 的走线, 或是 Cr/Al 的走线, 或者是 TFT 的部分. 这也就是为什么我们在图 9 中, 每一个 RGB 的亮点看起来, 并不是矩形, 在其左上角也有一块被 black matrix遮住的部分, 这一块黑色缺角的部份就是 TFT 的所在位置. 图 10 是常见的彩色滤光片的排列方式. 条状排列(stripe)最常使用于 OA 的产品, 也就是我们常见的笔记型计算机,或是桌上型计算机等等. 为什么这种应用要用条状排列的方式呢? 原因是现在的软件, 多半都是窗

23、口化的接口. 也就是说, 我们所看到的屏幕内容,就是一大堆大小不等的方框所组成的. 而条状排列,恰好可以使这些方框边缘 , 看起来更笔直, 而不会有一条直线, 看起来会有毛边或是锯齿状的感觉. 但是如果是应用在 AV 产品上, 就不一样了. 因为电视信号多半是人物, 人物的线条不是笔直的, 其轮廓大部分是不规则的曲线. 因此一开始, 使用于 AV 产品都是使用马赛克排列(mosaic, 或是称为对角形排列). 不过最近的 AV产品, 多已改进到使用三角形排列(triangle, 或是称为 delta 排列). 除了上述的排列方式之外, 还有一种排列, 叫做正方形排列. 它跟前面几个不一样的地方

24、在于, 它并不是以三个点来当作一个 pixel,而是以四个点来当作一个 pixel. 而四个点组合起来刚好形成一个正方形. 背光板(back light, BL) 在一般的 CRT 屏幕, 是利用高速的电子枪发射出电子, 打击在银光幕上的荧光粉, 藉以产生亮光, 来显示出画面. 然而液晶显示器本身, 仅能控制光线通过的亮度, 本身并无发光的功能. 因此,液晶显示器就必须加上一个背光板, 来提供一个高亮度,而且亮度分布均匀的光源. 我们在图 14 中可以看到 , 组成背光板的主要零件有灯管 (冷阴极管), 反射板, 导光板, prism sheet, 扩散板等等 . 灯管是主要的发光零件, 藉由

25、导光板, 将光线分布到各处. 而反射板则将光线限制住都只往 TFT LCD 的方向前进. 最后藉由 prism sheet 及扩散板的帮忙, 将光线均匀的分布到各个区域去, 提供给 TFT LCD 一个明亮的光源. 而 TFT LCD 则藉由电压控制液晶的转动, 控制通过光线的亮度, 藉以形成不同的灰阶. 框胶(Sealant)及 spacer 在图 14 中另外还有框胶与 spacer 两种结构成分. 其中框胶的用途,就是要让液晶面板中的上下两层玻璃, 能够紧密黏住, 并且提供面板中的液晶分子与外界的阻隔,所以框胶正如其名,是围绕于面板四周, 将液晶分子框限于面板之内. 而 spacer 主

26、要是提供上下两层玻璃的支撑, 它必须均匀的分布在玻璃基板上, 不然一但分布不均造成部分 spacer 聚集在一起, 反而会阻碍光线通过, 也无法维持上下两片玻璃的适当间隙(gap), 会成电场分布不均的现象, 进而影响液晶的灰阶表现. 开口率(Aperture ratio) 液晶显示器中有一个很重要的规格就是亮度, 而决定亮度最重要的因素就是开口率. 开口率是什么呢? 简单的来说就是光线能透过的有效区域比例 . 我们来看看图 17, 图 17 的左边是一个液晶显示器从正上方或是正下方看过去的结构图. 当光线经由背光板发射出来时, 并不是所有的光线都能穿过面板, 像是给 LCD source 驱

27、动芯片及 gate 驱动芯片用的信号走线, 以及 TFT 本身, 还有储存电压用的储存电容等等 . 这些地方除了不完全透光外, 也由于经过这些地方的光线 并不受到电压的控制 ,而无法显示正确的灰阶 , 所以都需利用 black matrix加以遮蔽, 以免干扰到其它透光区域的正确亮度. 所以有效的透光区域, 就只剩下如同图 17右边所显示的区域而已. 这一块有效的透光区域, 与全部面积的比例就称之为开口率. 当光线从背光板发射出来, 会依序穿过偏光板, 玻璃, 液晶, 彩色滤光片等等. 假设各个零件的穿透率如以下所示: 偏光板: 50%(因为其只准许单方向的极化光波通过) 玻璃:95%(需要计算上下两片) 液晶:95% 开口率:50%(有效透光区域只有一半) 彩色滤光片:27%(假设材质本身的穿透率为 80%,但由于滤光片本身涂有色彩, 只能容许该色彩的光波通过. 以 RGB 三原色来说, 只能容许三种其中一种通过. 所以仅剩下三分之一的亮度. 所以总共只能通过 80%*33%=27%.) 以上述的穿透率来计算, 从背光板出发的光线只会剩下 6%, 实在是少的可怜. 这也是为什么在 TFT LCD 的设计中, 要尽量提高开口率的原因. 只要提高开口率, 便可以增加亮度, 而同时背光板的亮度也不用那么高, 可以节省耗电及花费

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报