1、 1 / 5整式乘除与因式分解计算题一、计算:1、; 2、 (y 5) 23(y) 35y23、4、 (ab) 64(ba) 3(b a) 2(a b)5、 (2x3y) 28y2; 6、 (m+3n) (m 3n)(m 3n) 2;7、 (ab+c ) (a bc) ; 8、 (x+2y3) (x2y+3) ;9、 (a2b+c) 2; 10、(x2y) 2+(x 2y) (2yx)2x(2x y)2x11、 (m+2n) 2(m 2n) 2 12、 13、6a 5b6c4( 3a2b3c)(2a 3b3c3) 14、 (x 4y) (2x+3y)(x+2y) (x y) 15、( 2x2y
2、) 233xy4 16、 (m n) (m+n)+(m+n) 22m22 / 517、 (3xy 2) 3( x3y) 2; 18、4a 2x2( a4x3y3)( a5xy2) ;61 5119、 ; 20、 2)(4)(xyxy( 2 21()xxx (21、 (x 2) 8x4x102x5(x 3) 2x 22、3a 3b2a2+b(a 2b3ab5a2b) 23、 (x3) (x+3)(x+1 ) (x+3) 24、 (2x+y) (2xy)+(x+y ) 22(2x 2xy) 二、因式分解:25、6ab 324a3b; 26、2a 2+4a2; 27、4n 2(m2) 6(2m) ;
3、28、2x 2y8xy+8y; 29、a 2(x y)+4b 2(yx) ; 30、4m 2n2(m 2+n2) 2;3 / 531、 ; 32、 (a 2+1) 24a2; 33、3x n+16xn+3xn134、x 2y2+2y1; 35、 4a2b24a+1; 36、 4(x y) 24x+4y+1;37、3ax 26ax9a; 38、 x46x227; 39、 (a 22a) 22(a 22a)40、4x 34x2y+xy2 41、a 2(a 1)4(1 a) 2 42、 ; 312x43、 ; 44、 ; 45、22)1(axxaxyx212)(3(3bb三、先化简,再求值:46、
4、(2a+b) (2a b)+b(2a+b ) 4a2bb,其中 a= ,b=247、当 x=1,y=2 时,求代数式2x 2(x+y) (xy)(x y) (x+y)+2y 2的值4 / 548、 (x+2y) (2x+y)(x+2y) (2yx) ,其中 , 49、已知 x2x10,求 x32x 23 的值50、若 xy=1,xy=2,求 x3y2x2y2+xy3 51、已知 ,求 的值 2ab,32311abba52、已知 ,求 的值2450ab243ab53、已知 nm,是实数,且满足 ,026492nm那么分式 1428mn的值.54、若(x 2pxq) (x 22x3)展开后不含 x2,x 3 项,求 p、q 的值四、解下列方程或不等式组:55、2(x3) ( x+5)(2x1) (x+7)4 56、 (x+3) 2+2(x 1) 2=3x2+1357、 58、 (2x5) 2+(3x+1 ) 213(x 210) 41)8(2)5(3xx5 / 559、长方形纸片的长是 15,长宽上各剪去两个宽为 3的长条,剩下的面积是原面积的 求原面积53