1、三垂线定理(一)一、素质教育目标(一)知识教学点1三垂线定理及其逆定理的形成和论证2三垂线定理及其逆定理的简单应用(二)能力训练点1猜想和论证能力的训练2由线面垂直证明线线垂直的方法(线面垂直法);3训练学生分清三垂线定理及其逆定理中各条直线之间的关系;4善于在复杂图形中分离出适用的直线用于解题(三)德育渗透点通过定理的论证和练习的训练渗透化繁为简的思想和转化的思想二、教学重点、难点、疑点及解决方法1教学重点(1) 掌握三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直(2)掌握三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它
2、也和这条斜线的射影垂直2教学难点:两个定理的证明及应用3教学疑点及解决方法(1)三垂线定理及其逆定理,揭示了平面内的直线与平面的垂线、斜线及斜线在平面内的射影这三条直线的垂直关系,其实质是平面内的一条直线与平面的一条斜线(或斜线在平面内的射影)垂直的判定定理(2)本节课的两个定理,涉及的直线较多,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,按照教师的要求摆放在学生感性认识的基础上,进行理性的证明和记忆,有助于定理的掌握(3)三垂线定理是先有直线 a 垂直于射影 AO 的条件,然后得到 a 垂直于斜线 PO 的结论;而其逆定理则
3、是已知直线 a 垂直于斜线 PO,再推出 a 垂直于射影AO在引用时容易引起混淆,解决的办法是,构造一个同时使用这两个定理的问题,引导学生分清(4)教学核心是定理的形成教学,教学的指导思想是:遵循由具体探究抽象、由简单到复杂的认识规律,启发学生反复思考,不断内化成为自己的认知结构三、课时安排本课题共安排 2 课时,本节课为第一课时四、学生活动设计三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学
4、生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性五、教学步骤(一)温故知新,引入课题师:我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾:1直线和平面垂直的定义?2直线和平面垂直的判定定理3什么叫做平面的斜线、斜线在平面上的射影?4已知平面 和斜线 l,如何作出 l 在平面 上的射影?(板书)lA,作出 l 在平面 上的射影(二)猜想推测,激发兴趣师:根据直线与平面垂直的定义我们知道,平面内的任意一条直线都和平面的垂线垂直,那么,平面内的任意一条直线是否也都和平面的一条斜线垂直呢?(教师演示教具,用一个三角板的一条直角边当平面的斜线,一根包有色纸的竹竿摆放在桌面
5、的不同位置当作平面内的不同直线,学生容易看出它们不一定互相垂直)师:是否平面内的任意一条直线都不和这条平面的斜线垂直呢?(教师将三角板的另一条直角边平放在桌面上,并提示学生注意这条直角边与平面的关系在平面上,与斜线的关系垂直)师:在平面上有几条直线和这条斜线垂直?(学生可能会回答一条,也可能回答无数条,教师应调整桌面上的竹竿位置,使其平行于三角板的直角边,然后平行移动,并向学生说明,这些直线都与斜线垂直)师:平面内一条直线具备什么条件,才能和平面的一条斜线垂直?(学生的直觉判断是要与那条和桌面接触的直角边平行,这是正确的,但无多大用途;这时教师提醒学生注意斜线在平面内的射影,并调整教具,将三角
6、板的斜边当作平面的斜线,构成垂线、斜线和射影的立体模型;要求学生与同桌配合,摆放课前准备的竹签成教师示范的模型;然后在教师的引导之下观察、猜想,与同桌的探讨中发现了只要与斜线的射影垂直就和斜线垂直)(三)层层推进,证明定理师:猜测和实验的结论不一定正确,那么你想怎样证明这个猜想呢?(若用幻灯或投影仪,可以节省板书时间)已知:PA、PO 分别是平面 的垂线、斜线,AO 是 PO 在平面 求证:aPO师:这是证明两条直线互相垂直的问题,你准备怎么证明?分析:从直线和平面垂直的定义可知,要证两条直线互相垂直,只要证明其中一条直线垂直于另一条直线所在的平面即可师:这个平面你找到了吗?生:是平面 PAO
7、师:怎样证明 a平面 PAO 呢?生:只要证明 a 垂直于平面 PAO 内的两条相交直线证明:说明:1定理的证明,体现了“由线面垂直证明线线垂直”的方法;2上述命题反映了平面内的直线、平面的斜线和斜线在平面内的射影这三条直线之间的垂直关系,这就是著名的三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直3改变定理的题设和结论,得到逆命题:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直可以用同样的方法证明,这就是三垂线定理的逆定理(请学生简要说明其证明方法和步骤)4定理中包含了三个垂直关系:PA,AOa,POa,看出三垂线定理
8、名称的来由5从定理的条件看,关键的是直线和平面的相对位置关系,而与平面本身是否水平放置无关;在平面内的直线 a 与斜线或斜线的射影的位置关系关键在于垂直;这样直线 a 的如下四种位置关系,都是三垂线定理及其逆定理常见的情形6从定理的结论看,三垂线定理及其逆定理是判断直线垂直的重要命题(四)初步运用,提高能力1(见课后练习题 1)已知:点 O 是ABC 的垂心,OP平面 ABC求证:PABC(学生先思考,教师作如下点拨)(1)什么叫做三角形垂心?(2)点 O 是ABC 的垂心可以得到什么结论?(3)可以考虑使用三垂线定理证明:你能找出本题中,应用三垂线定理必须涉及到的几个重要元素?生:首先先确定
9、一个平面平面 ABC,斜线是 PA,PA 在平面 ABC 上的射影是AD,AD 垂直于 BC,PABC师:他的回答是否有缺漏?生:应该交代 BC 是平面 ABC 上的一条直线师:对,这个交代是必需的!(视学生程度作适当补充,用教具演示,还可以举反例说明)证明:连接 AO 并延长交 BC 与 D师:三垂线定理是证明空间两条直线互相垂直的重要方法,上面的示例反映了应用三垂线定理解题的一般步骤,即确定一个平面、平面的垂线、斜线和斜线在平面上的射影同时要注意的是平面内的一条直线和射影垂直,有这条直线和斜线垂直(定理);平面内的一条直线和斜线垂直,有这条直线和射影垂直(逆定理),同学们必须理解掌握2(见
10、课本例 1)如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上AC,PO,垂足分别是 E、F、O,PEPF求证:BAOCAO(学生思考,教师作适当的点拨)(1)在平面几何中,证明点在角的平分线上的常规方法是什么?(2)PEPF 给我们提供了什么结论?(3)所缺的垂直关系可以用三垂线定理或逆定理证明,你能列出证明所需的条件吗?证明:3(课堂练习,师生共同完成)如图 1-91,点 P 为平面 ABC 外一点,PABC,PCAB,求证:PBAC分析:证明直线与直线垂直的问题,可以考虑三垂线定理及其逆定理,图形中缺少的平面的垂线需要添加上去证明:过 P 作平面 AB
11、C 的垂线,垂足为 O,连结 AO、BO、CO PABC,AOBC(三垂线逆定理)同理可证 COAB,O 是ABC 的垂心OBAC,PBAC(三垂线定理)(五)归纳小结,强化思想师:这节课,我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过三个练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路六、布置作业作为一般要求,完成习题四 11、12、13提高要求,完成以下两个补充练习:1如图 1-92,PAABC 所在平面,ABAC13,BC10,PA5,求点 P到直线 BC 的距离参考答案:设 BC 的中点为 D,连结 PDA
12、BAC13,BC10,ADBC且 AD12又PA平面 ABC,PDBC即 PD 的长度就是 P 到直线 BC 的距离而 PD132(课后练习题 2 略作改变)如图 1-93,l 是平面 的斜线,斜足是 O,A 是 l 上任意一点,AB 是平面 的垂线,B 是垂足,设 OD 是平面 内与 OB 不同的一条直线,AC 垂直于 OD于 C,若直线 l 与平面 所成的角 45,BOC45,求AOC 的大小参考答案:连结 BC中,有AOC60讲评作业时说明:求角大小的问题,往往先确定(或构造)一个包含这个角的三角形,然后解三角形由此,我们还验证了AOC高考试题库w。w-w*高考试题库高考试题库w。w-w*高考试题库