收藏 分享(赏)

高一数学教案:直线、平面、简单几何体:12(苏教版).doc

上传人:无敌 文档编号:549893 上传时间:2018-04-10 格式:DOC 页数:8 大小:119.50KB
下载 相关 举报
高一数学教案:直线、平面、简单几何体:12(苏教版).doc_第1页
第1页 / 共8页
高一数学教案:直线、平面、简单几何体:12(苏教版).doc_第2页
第2页 / 共8页
高一数学教案:直线、平面、简单几何体:12(苏教版).doc_第3页
第3页 / 共8页
高一数学教案:直线、平面、简单几何体:12(苏教版).doc_第4页
第4页 / 共8页
高一数学教案:直线、平面、简单几何体:12(苏教版).doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、斜线在平面上的射影,直线和平面所成的角一、素质教育目标(一)知识教学点1点在平面上的射影,点到平面的垂线段2有关平面的斜线的几个概念3有关射影的几个概念4射影定理5有关直线和平面成角的几个概念(二)能力训练点1加深对数学概念的理解掌握2初步学会依据直线与平面成角的定义用于解决成角问题的一般方法二、教学重点、难点、疑点及解决方法1教学重点:射影定理的叙述和记忆及直线与平面成角的概念2教学难点:定理的理解及有关直线与平面成角的练习3教学疑点及解决方法:(1)“ 斜线在平面上的射影”是“直线和平面所成的角”的基础;“斜线在平面上的射影”这一小节出现概念较多,为了便于学生理解和记忆,可以边画出课本的图

2、形 1-30 边讲解,结合图形记忆,快而且准教学中,一般先画出斜线 AC 与平面 斜交于 C,再过 AC 上一点 A 引 AB,垂足为点 B,连结 BC,然后指出 AC 是平面 上的斜线;线段 AC 是点 A 到平面 的斜线段,线段 AB是点 A 到平面 的垂线段,点 B 是点 A 到平面 的垂线的垂足,直线 BC 是线段 AC 在平面 上的射影(2)斜线段在平面上的射影是一条线段,斜线在平面上的射影是直线,垂线和垂线段在平面上的射影退化成一个点(3)为照顾一般习惯说法,课本中定义射影是用“在平面上”,而说点、直线“在平面内”,并非不同(4)射影定理中三个结论成立的前提是这些斜线段及垂线段必须

3、是从平面外同一点向平面所引而得到的,否则,结论不成立(5)直线和平面相交,它们的相互位置与两条相交直线一样,仍需用角来表示,但过交点在平面内可以作许多条直线,与平面相交的直线同平面内每一条直线所成的角是不相等的,为了定义的准确性,所以取这些角中有确定值的最小角,也就是取该斜线与其在平面上射影所成的锐角作为直线和平面所成的角;(6)直线和平面的位置关系可以用直线和平面成角范围来刻划;反之,由直线和平面所成角的大小也可以确定直线和平面的相互位置:直线和平面平行或直线在平面内,0直线和平面成角的范围是 090三、课时安排1 课时四、学生活动设计常规活动(略)五、教学步骤(一)新课概念教学1点在平面上

4、的射影,点到平面的垂线段自一点向平面引垂线,垂足叫做这点在这个平面上的射影这点与垂足间的线段叫这点到这个平面的垂线段2平面的斜线的有关概念一条直线和一个平面相交,但不和这个平面垂直,这条直线叫这个平面的斜线,斜线和平面的交点叫斜足,斜线上一点和斜足间的线段叫这点到这个平面的斜线段3射影的有关概念过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫斜线在这个平面上的射影垂足和斜足间的线段叫这点到平面的斜线段在这个平面上的射影说明:教师边画出课本图形 1-30,边讲解点 B点 A 在平面上的射影AB点 A 到平面的垂线段AC平面的一条斜线C斜足线段 AC斜线段直线 BC斜线 AC 在平面上的射

5、影线段 BC斜线段 AC 在平面上的射影(板书)(1)点在平面上的射影(2)点到平面的垂线段(3)斜线、斜足、斜线段(4)斜线在平面上的射影(5)线段在平面上的射影(二)射影定理从平面外一点向这个平面所引的垂线段和斜线段中,(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短关于射影定理说明如下:设 A 为平面 外一点,AO,AB、AC 为任意两条斜线,O 为垂足,则 OB和 OC 分别是 AB 和 AC 的射影则 AB 和 AC 分别为 RtABO 和 RtACO 的斜边;由勾股定理可知AB2AO2+

6、OB2;AC2AO2+OC2;比较上面两个等式,得还可以得到 ABAO,ACAO所以,AO 过点 A 向平面 所引线段中最短的一条(三)直线与平面成角1定义:(1)平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和平面所成的角(2)直线和平面垂直直线与平面所成的角是直角(3)直线和平面平行或直线在平面内直线与平面所成的角是 0度的角2按照定义,在求直线和平面所成的角时,应按下述三种情况依次进行考虑:(1) 直线和平面平行或直线在平面内时,直线和平面所成的角是 0角;(2)直线和平面垂直时,直线和平面所成的角是直角;(3)直线和平面斜交时,直线和平面所在的角是指直线和它在平面内的射影所成

7、的锐角3斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角(让学生看书 3 分钟,加以理解)(四)例题分析1如图 1-82,在正方体 ABCD-A1B1C1D1 中,E、F 分别是 AA1、A1D1 的中点,求:(1)D1B1 与面 AC 所成角的余弦值;(2)EF 与面 A1C1 所成的角;(3)EF 与面 AC 所成的角解:(2)45(3)452如图 1-83,RtABC 的斜边 AB 在平面 M 内,AC 和 BC 与 M 所成的角分别是 30、45,CD 是斜边 AB 上的高,求 CD 与 M 所成的角分析:作出 CD 与平面 M 所成的角,然后去解含这个角的三

8、角形解:作 CC1平面 M,连结 AC1、BC1、DC1,依题意CAC130,CBC145,设 CC1a,则 AC2a,CDC1603可让学生完成课后练习 1、2(五)归纳小结这节课,我们学习了有关平面的斜线、射影和直线与平面成角的几个概念,射影定理中的三个结论成立的前提是这些斜线段及垂线段必须是从平面外同一点向平面所引而得到的否则,结论不成立六、布置作业作为一般要求,完成习题四 9、10补充:1AB 是直角三角形 ABC 的斜边,三个顶点在平面 M 的同侧,它们在 M 内的射影分别是 A1、B1、C1,如果三角形 A1B1C1 是正三角形,且AA13cm,BB15cm,CC14cm求三角形 A1B1C1 的面积解:设正三角形 A1B1C1 的边长为 x则 AC2x2+1BC2x2+1AB2x2+22AC2+BC2=AB2,2已知 PA,PB,PC 与平面 所成的角分别为 60,45,30,PO平面 ,O 为垂足,又斜足 A,B,C 三点在同一直线上,且 ABBC10cm,求 PO的长参考答案:高考试题库w。w-w*高考试题库高考试题库w。w-w*高考试题库

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报