1、2.2.1 对数与对数运算,第一课时 对 数,问题提出,1.截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?到哪一年我国的人口数将达到18亿?,13 (11)x18,求x=?,3.上面的实际问题归结为一个什么数学问题?,2.假设2006年我国国民生产总值为a亿元,如果每年的平均增长率为8% ,那么经过多少年我国的国民生产总值是2006年的2倍?,(18)x2,求x=?,已知底数和幂的值,求指数.,对数,知识探究(一):对数的概念,思考1:若24M,则M? 若22N,则N?,思考3:满足2x3的x的值,我们用log
2、23表示,即xlog23,并叫做“以2为底3的对数”.那么满足2x16,2x ,4x8的x的值可分别怎样表示?,思考4:一般地,如果axN(a0,且a1),那么数x叫做什么?怎样表示?,xlogaN,思考6: 满足 , , (其中e=2.7182818459045)的x的值可分别怎样表示?这样的对数有什么特殊名称?,思考5:前面问题中, , 中的x的值可分别怎样表示?,思考1:当a0,且a1时,若axN,则xlogaN,反之成立吗?,思考2:在指数式axN和对数式xlogaN中,a,x,N各自的地位有什么不同?,知识探究(二):对数与指数的关系,思考3:当a0,且a1时,loga(-2),lo
3、ga0存在吗?为什么?由此能得到什么结论?,思考4:根据对数定义,logal和logaa(a0,a1)的值分别是多少?,思考5:若axN,则xlogaN ,二者组合可得什么等式?,理论迁移,例1.将下列指数式化为对数式,对数式 化为指数式: (1) 54625 ; (2) 26 ; (3) ( )m5.73 ; (4) ; (5) lg0.01=; (6) ln102.303.,例2.求下列各式中的值: (1)log64x ; (2) logx86 ; (3)lg100=x; (4)lne2 .,作业:P练习:1,.P习题2.A组:1,.,第二课时 对数的运算,2.2.1 对数与对数运算,问题
4、提出,1.对数源于指数,对数与指数是怎样互化的?,2.指数与对数都是一种运算,而且它们互为逆运算,指数运算有一系列性质,那么对数运算有那些性质呢?,对数的运算,知识探究(一):积与商的对数,思考2:将log232log24十log28推广到一般情形有什么结论?,思考1:求下列三个对数的值:log232, log24 , log28你能发现这三个对数之间有哪些内在联系?,思考3:如果a0,且a1,M0,N0,你能证明等式loga(MN)logaM十logaN成立吗?,思考4:将log232log24=log28推广到一般情形有什么结论?怎样证明?,思考5:若a0,且a1,M1,M2,Mn均大于0
5、,则loga(M1M2M3Mn)?,知识探究(二):幂的对数,思考1:log23与log281有什么关系?,思考2:将log281=4log23推广到一般情形有什么结论?,思考3:如果a0,且a1,M0,你有什么方法证明等式logaMnnlogaM成立,思考4:log2x2=2log2x对任意实数x恒成立吗?,思考6:上述关于对数运算的三个基本性质如何用文字语言描述?,思考5:如果a0,且a1,M0,则 等于什么?,两数积的对数,等于各数的对数的和;两数商的对数,等于被除数的对数减去 除数的对数;幂的对数等于幂指数乘以底数的对数,理论迁移,例1 用logax,logay,logaz表示下列 各
6、式: ; (2) .,例2 求下列各式的值: (1) log2(4725); (2) lg ;(3) log318 -log32 ;(4) .,例3 计算:,小结作业:性质的等号左端是乘积的对数,右端是对数的和,从左往右看是个降级运算.性质的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.性质从左往右仍然是降级运算利用对数的性质可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,大大的方便了对数式的化简和求值.,作业: P68练习:1, 2,3.P74习题2.2A组:3,4,5.,2.2.1 对数与对数运算,第三课时 换底公式及对数运算的应用,问
7、题提出,.,(1) (2) (3),(1) ; (2) ; (3) .,1.对数运算有哪三条基本性质?,2.对数运算有哪三个常用结论?,3.同底数的两个对数可以进行加、减运算,可以进行乘、除运算吗?,4.由 得 ,但这只是一种表示,如何求得x的值?,换底公式及对数运算的应用,知识探究(一):对数的换底公式,思考2:你能用lg2和lg3表示log23吗?,思考1:假设 ,则 ,从而有 .进一步可得到什么结论?,思考3:一般地,如果a0,且a1;c0,且c1;b0,那么 与哪个对数相等?如何证明这个结论?,思考6:换底公式在对数运算中有什么意 义和作用?,思考5:通过查表可得任何一个正数的常用对数
8、,利用换底公式如何求 的值?,知识探究(二):换底公式的变式,思考1: 与 有什么关系?,思考2: 与 有什么关系?,思考3: 可变形为什么?,理论迁移,例1 计算: (1) ; (2)(log2125log425log85) (log52log254log1258),作业:P68 练习:4.P74 习题2.2A组: 6,11,12.,2.2.1 对数与对数运算,第四课时 对数运算习题课,知识回顾,.,1.指数与对数的换算:,2.对数运算的三个常用结论:,3.对数运算的三条基本性质:,4.对数换底公式:,理论迁移,例1 求下列各式的值:,2,-2,1,例2 已知 ,求 的值.,例3 设 ,已知
9、 , 求 的值.,例4 20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越. 这就是我们常说的里氏震级M,其计算公式为MlgAlgA0. 其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);,4.3,20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,
10、测震仪记录的地震曲线的振幅就越. 这就是我们常说的里氏震级M,其计算公式为MlgAlgA0. 其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).,398,例5 生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7,试推算马王堆古墓的年代.,2193,思考题:设函数已知 且对一切 恒成立,求 的最小值.,2.2.2 对数函数及其性质,第一课时 对数函数的概念与图象,问题提出,1.
11、用清水漂洗含1个单位质量污垢的衣服,若每次能洗去污垢的四分之三,试写出漂洗次数y与残留污垢x的关系式.,2. (x0)是函数吗?若是,这是什么类型的函数?,对数函数的概念与图象,知识探究(一):对数函数的概念,思考1:在上面的问题中,若要使残留的污垢为原来的 ,则要漂洗几次?,思考3:函数 称为对数函数,一般地,什么叫对数函数?,思考4:为什么在对数函数中要求a0, 且al?,思考5:对数函数的定义域、值域分别是什么?,思考6:函数 与 相同吗?为什么?,思考1:研究对数函数的基本特性应先研究其图象.你有什么方法作对数函数的图象?,知识探究(二):对数函数的图象,思考2:设点P(m,n)为对数
12、函数 图象上任意一点,则 ,从而有 .由此可知点Q(n,m)在哪个函数的图象上?,思考3:点P(m,n)与点Q(n,m)有怎样的位置关系?由此说明对数函数 的图象与指数函数 的图象有怎样的位置关系?,思考4:一般地,对数函数的图象可分为几类?其大致形状如何?,思考5:函数 与 的图象分别如何?,a1,0a0,a1);(4)log75,log67.,理论迁移,例2 求下列函数的定义域、值域: (1) y ; (2) ylog2(x22x5).,例3 溶液酸碱度的测量: 溶液酸碱度是通过pH刻画的. pH的计算公式为pHlgH+,其中H+表示溶液中氢离子的浓度,单位是摩尔升.(1)根据对数函数性质
13、及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯净水中氢离子的浓度为H+107摩尔升,计算纯净水的pH.,作业: P73 练习:3 P74 习题2.2B组:1, 2,3.,第三课时 指、对数函数与反函数,2.2.2 对数函数及其性质,问题提出,设a0,且a1为常数, .若以t为自变量可得指数函数yax,若以s为自变量可得对数函数ylogax. 这两个函数之间的关系如何进一步进行数学解释?,指、对数函数与反函数,知识探究(一):反函数的概念,思考1:设某物体以3m/s的速度作匀速直线运动,分别以位移s和时间t为自变量,可以得到哪两个函数?这两个函数相同吗?,思
14、考2:设 ,分别x、y为自变量可以得到哪两个函数?这两个函数相同吗?,思考3:我们把具有上述特征的两个函数互称为反函数,那么函数yax(a0,且a1)的反函数是什么?函数 的反函数是什么?,思考4:在函数yx2中,若将y作自变量,那么x与y的对应关系是函数吗?为什么?,思考5:一个函数在其对应形式上有一对一和多对一两种,那么在哪种对应下的函数才存在反函数?,知识探究(二): 指、对数函数的比较分析,思考1:当a1时,指、对数函数的图象和性质如下表:你能发现这两个函数有什么内在联系吗?,R,R,当x0时y1;当x0时0y1时y0;当0x1时y0;当x=1时y=0;在R上是减函数.,思考2:一般地,原函数与反函数的定义域、值域有什么关系?函数图象之间有什么关系?单调性有什么关系?,理论迁移,例1 求下列函数的反函数:(1)y3x1 ; (2)y 1 (x0);(3) ;(4) .,例2 已知函数 .(1)求函数f(x)的定义域和值域;(2)求证函数y=f(x)的图象关于直线 y=x对称.,例3 若点P(1,2)同时在函数y 及其反函数的图象上,求a、b 的值.,作业:P75 习题2.2B组:1,4,5.,