1、1.1 三角形的边 每课一练(人教版八年级上)一、选择题1.三角形是( )A连接任意三角形组成的图形B由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C由三条线段组成的图形D以上说法均不对2.若ABC 三条边的长度分别为 m,n,p,且 ,则这个三角形为02pnm( )A等腰三角形 B.等边三角形C直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( )A一个直角三角形一定不是等腰三角形B一个等腰三角形一定不是锐角三角形C一个等腰三角形一定不是等腰三角形D一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( )A1,2,3 B.2,2,4 C.3,
2、4,5 D.3,4,85.(2012海南)一个三角形的两边长分别为cm 和cm,则此三角形第三边长可能是( )A3cm B.4 cm C. 7 cm D.11cm6.(2012义乌)一个三角形的两边长分别为和,第三边长是偶数,则第三边长可以是( )A2 B.3 C.4 D.87.(2013河北)如图 1,M 是铁丝 AD 的中点,将该铁丝首尾相接折成ABC,且B=30,C=100,如图 2则下列说法正确的是( )A点 M 在 AB 上B点 M 在 BC 的中点处C点 M 在 BC 上,且距点 B 较近,距点 C 较远(第 7 题) (第 8 题) (第 9 题)D点 M 在 BC 上,且距点
3、C 较近,距点 B 较远8.(2012台湾)如图 1 为图 2 中三角柱 ABCEFG 的展开图,其中AE、BF、CG、DH 是三角柱的边若图 1 中,AD=10,CD=2,则下列何者可为 AB 长度?( )A2 B3 C4 D5二、填空题9.(2006绍兴)若有一条公共边的两个三角形称为一对“共边三角形” ,则图中以 BC 为公共边的 “共边三角形”有_对10.(2009呼和浩特)已知ABC 的一个外角为 50,则ABC 一定是_三角形11.若等腰三角形两边长分别为和,则它的周长是_.12.如图, 在三角形中所对的边是_.13.用根火柴首尾顺次相接摆成一个三角形,能摆成_个不同的三角形.14
4、.如图,在图中互不重叠的三角形共有个,在图中,互不重叠的三角形共有个,在图中,互不重叠的三角形共有个则在第 n 个图形中,互不重叠的三角形共有_个(用含 n 的代数式表示).15.用 12 根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有_ 16.如图,图 1 中共有 3 个三角形,图 2 中共有 6 个三角形,图 3 中共有 10 个三角形,以此类推,则图 6 中共有 _ 个三角形17.如图,直角 ABC 的周长为 2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为 _18.平面上有 5 个点,其中任意三点都不在同一条直线上,则这些点
5、共可组成_个不同的三角形3、解答题19.(2006贵阳)两条平行直线上各有 n 个点,用这 n 对点按如下的规则连接线段;平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;符合要求的线段必须全部画出;图 1 展示了当 n=1 时的情况,此时图中三角形的个数为 0;图 2 展示了当 n=2 时的一种情况,此时图中三角形的个数为 2;(1)当 n=3 时,请在图 3 中画出使三角形个数最少的图形,此时图中三角形的个数为_个;(2)试猜想当 n 对点时,按上述规则画出的图形中,最少有多少个三角形?(3)当 n=2006 时,按上述规则画出的图形中,最少有多少个三角形?20.过 A、B、C
6、 、D 、E 五个点中任意三点画三角形;(1)其中以 AB 为一边可以画出_个三角形;(2)其中以 C 为顶点可以画出 _个三角形21.(2003泸州)如图,ABC 是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法要求:画出图形,并简要说明分法22.如图,ABC 中,A1,A2,A3,An 为 AC 边上不同的 n 个点,首先连接 BA1,图中出现了 3 个不同的三角形,再连接 BA2,图中便有 6 个不同的三角形(1)完成下表:连接个数 出现三角形个数若出现了 45 个三
7、角形,则共连接了多少个点?若一直连接到 An,则图中共有_个三角形23.一个三角形三边长之比为 2:3:4,周长为 36cm,求此三角形的三边长1.1 三角形的边 每课一练参考答案1、选择题1.B 2.B 3.D 4.C 5.C 6.C 7.C 8.C二、填空题9.3 10.钝角 11.11 或 13 12., 13.2 14.(3n+1) 15.3 16.28 17.2008 18.10三、解答题19.解:(1)4 个;(2)当有 n 对点时,最少可以画 2(n-1)个三角形;(3)2(2006-1)=4010 个答:当 n=2006 时,最少可以画 4010 个三角形20.解:(1)如图,
8、以 AB 为一边的三角形有ABC、ABD、ABE 共 3 个;(2)如图,以点 C 为顶点的三角形有ABC、BEC 、BCD、ACE、ACD、CDE 共 6 个故答案为:(1)3, (2)621.解:第一种是取各边的中点,分别取,ABBC,AC 的中点 D,E,Y,连接 DE,EY 和 AE,所形成的四个三角形面积相等(如下图) 第二种,在 BC 边上取四等分点 D,E,F,分别连接 AD,AE ,AF,所形成的四个三角形面积相等(如下图) 22.解:(1) 连接个数 1 2 3 4 5 6出现三角形个数 3 6 10 15 21 28(2)8 个点;(3)1+2+3+(n+1)= )(n23.解:设三边长分别为 2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4 故三边长为:8cm,12cm,16cm