1、2019/3/2,1,概率论与数理统计,2,数 理 统 计,3,第五章 大数定律和中心极限定理,关键词:契比雪夫不等式大数定律中心极限定理,4,1 大数定律,背景 本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证为了证明大数定理,先介绍一个重要不等式,5,6,例1:在n重贝努里试验中,若已知每次试验事件A出现的概率为0.75,试利用契比雪夫不等式估计n,使A出现的频率在0.74至0.76之间的概率不小于0.90。,7,随机变量序列依概率收敛的定义,8,9,大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意义
2、,贝努里大数定律还提供了通过试验来确定事件概率的方法,既然频率nA/n与概率p有较大偏差的可能性很小,我们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法即是在第7章将要介绍的参数估计法,参数估计的重要理论基础之一就是大数定理。,10,2 中心极限定理,背景:有许多随机变量,它们是由大量的相互独立的随机变量的综合影响所形成的,而其中每个个别的因素作用都很小,这种随机变量往往服从或近似服从正态分布,或者说它的极限分布是正态分布,中心极限定理正是从数学上论证了这一现象,它在长达两个世纪的时期内曾是概率论研究的中心课题。,11,12,13,例2:设某种电器元件的寿命服从均值为1
3、00小时的指数分布,现随机取得16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。,14,例3:某保险公司的老年人寿保险有1万人参加,每人每年交200 元, 若老人在该年内死亡,公司付给受益人1万元。设老年人死亡 率为0.017,试求保险公司在一年内这项保险亏本的概率。,15,例4:设某工厂有400台同类机器,各台机器发生故障的概 率都是0.02,各台机器工作是相互独立的,试求机 器出故障的台数不小于2的概率。,16,第六章 数理统计的基本概念,关键词:总 体个 体样 本统 计 量,17,引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已
4、经知道,由于大 量的 随机试验中各种结果的出现必然呈现它的 规律 性,因而从理论上讲只要对随机现象进行 足够多次观察,各种结果的规律性一定能清楚 地呈现,但是实际上所允许的观察永远是有限 的,甚至是 少量的。例如:若规定灯泡寿命低于1000小时者 为次 品,如何确定次品率?由于灯泡寿命试验是 破坏性试验,不可能把整批灯泡逐一检测,只 能抽取一部分灯泡作为样本进行检验,以样本 的信 息来推断总体的信息,这是数理统计学研 究的问题之一。,18,1 总体和样本,总体:研究对象的全体。如一批灯泡。 个体:组成总体的每个元素。如某个灯泡。 抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。 随机样
5、本:随机抽取的n个个体的集合(X1,X2,Xn), n为样本容量 简单随机样本:满足以下两个条件的随机样本(X1,X2,Xn)称 为简单随机样本。1. 每个Xi与X同分布2. X1,X2,Xn是相互独立的随机变量说明:后面提到的样本均指简单随机样本,由概率论知,若总体X 具有概率密度f(x),则样本(X1,X2,Xn)具有联合密度函数:,19,统计量:样本的不含任何未知参数的函数。 常用统计量:设(X1,X2,Xn)为取自总体X的样本,20,随机变量独立性的两个定理,21,2 常用的分布,22,23,24,25,26,27,28,正态总体样本均值和方差的分布,29,30,32,复习思考题 6,
6、1.什么叫总体?什么叫简单随机样本?总体X的样本X1,X2,Xn有哪两个主要性质?2.什么是统计量?什么是统计量的值?3.样本均值和样本方差如何计算?4.N(0,1)分布,t分布,2分布和F分布的双侧、下侧、上侧分位点是 如何定义的?怎样利用附表查这些分位点的值?5.对一个正态总体的三个常用统计量及其分布是什么?6.对两个正态总体的三个常用统计量及其分布是什么?,33,第七章 参数估计,关键词:矩估计法极大似然估计法置信区间置信度,34,35,1 参数的点估计,36,37,38,39,极大似然估计法,极大似然估计的原理介绍考察以下例子:假设在一个罐中放着许多白球和黑球,并假定已经知道两种球的数
7、目之比是1:3,但不知道哪种颜色的球多。如果用返回抽样方法从罐中任取n个球,则其中黑球的个数为x的概率为:若取n=3,如何通过x来估计p值先计算抽样的可能结果x在这两种p值之下的概率:,40,41,42,43,44,45,46,47,表1 例2,例4,例5中两种估计方法所得结果,48,2 估计量的评选标准,从表1看到,对总体的未知参数可用不同方法求得不同的估计量,如何评价好坏?通常用三条标准检验:无偏性,有效性,相合性无偏性,49,50,51,纠偏方法,52,有效性,53,54,相合性,55,56,3 区间估计,57,58,单侧置信区间,59,正态总体均值方差的区间估计,60,61,62,63
8、,64,区间短 精度高,区间长 精度低,65,66,67,68,69,70,例12:两台机床生产同一个型号的滚珠,从甲机床生产的滚 珠中抽取8个,从乙机床生产的滚珠中抽取9个,测得这 些滚珠得直径(毫米)如下:甲机床 15.0 14.8 15.2 15.4 14.9 15.1 15.2 14.8乙机床 15.2 15.0 14.8 15.1 14.6 14.8 15.1 14.5 15.0,71,72,说明 置信区间包含两方面含义1.置信水平 2.区间长度 置信水平越高,区间越大,但区间精确度差 置信区间越小,精确度高,但置信水平差,正态总体均值、方差的置信区间与单侧置信限,复习思考题 7,1
9、.总体未知参数矩估计的思想方法是什么?试写出0-1分布、二项分布b(m,p)、泊松分布()、均匀分布U(a,b)、正态分布N(,2)中有关参数的矩估计式 2.极大似然估计的主要步骤是什么? 3.未知参数的估计量与估计值有什么区别?5.估计量的三个基本评价标准是什么?你能理解它们的含义吗? 6.求参数置信区间的一般方法是什么?对正态总体,试从有关的统计量自行导出几类参数的置信区间? 7.置信度的含义是什么?置信度、区间长度和样本容量的关系怎样?,75,复习思考题 8,1.假设检验的基本思想是什么?其中使用了一条什么原理? 2.检验的显著性水平的意义是什么? 3.比较双边、左边和右边检验的拒绝域。 4.使用U检验法可以进行哪些假设检验? 5.使用t检验法可以进行哪些假设检验? 6.使用2检验法可以进行哪些假设检验? 7.使用F检验法可以进行哪些假设检验? 8.正态总体期望与方差的区间估计和假设检验两者之间有什么相似之处? 9.成对数据差的t检验适用于哪些特殊场合? 10.分布拟合的2检验的基本步骤是什么?,2019/3/2,课件结束!,