1、反比例函数知识点归纳一、知识结构二、基础知识(一)反比例函数的概念1 ( )可以写成 ( )的形式,注意自变量 x 的指数为 ,在解决有关自变量指数问题时应特别注意系数 这一限制条件;2 ( )也可以写成 xy=k 的形式,用它可以迅速地求出反比例函数解析式中的 k,从而得到反比例函数的解析式;3反比例函数 的自变量 ,故函数图象与 x 轴、y 轴无交点(二)反比例函数的图象在用描点法画反比例函数 的图象时,应注意自变量 x 的取值不能为0,且 x 应对称取点(关于原点对称) (三)反比例函数及其图象的性质1函数解析式: ( )2自变量的取值范围:3图象:(1)图象的形状:双曲线越大,图象的弯
2、曲度越小,曲线越平直 越小,图象的弯曲度越大(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线当 时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;当 时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(, )在双曲线的另一支上图象关于直线 对称,即若(a,b)在双曲线的一支上,则( , )和( , )在双曲线的另一支上4k 的几何意义如图 1,设点 P(a,b)是双曲线 上任意一点,作 PAx 轴于 A 点,PBy 轴于 B 点,则矩形 PBOA 的面积是 (三角形 PAO 和三角形 PBO 的面积都是 ) 如图 2,由双曲线的对称性可知,P 关于原点的对称点 Q 也在双曲线上,作QCPA 的延长线于 C,则有三角形 PQC 的面积为 图 1 图 25说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论 (2)直线 与双曲线 的关系:当 时,两图象没有交点;当 时,两图象必有两个交点,且这两个交点关于原点成中心对称(四)实际问题与反比例函数1求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式2注意学科间知识的综合,但重点放在对数学知识的研究上(五)充分利用数形结合的思想解决问题