收藏 分享(赏)

数学:北师大版八年级上《生活中的旋转》教学设计.doc

上传人:HR专家 文档编号:5220173 上传时间:2019-02-12 格式:DOC 页数:10 大小:163.50KB
下载 相关 举报
数学:北师大版八年级上《生活中的旋转》教学设计.doc_第1页
第1页 / 共10页
数学:北师大版八年级上《生活中的旋转》教学设计.doc_第2页
第2页 / 共10页
数学:北师大版八年级上《生活中的旋转》教学设计.doc_第3页
第3页 / 共10页
数学:北师大版八年级上《生活中的旋转》教学设计.doc_第4页
第4页 / 共10页
数学:北师大版八年级上《生活中的旋转》教学设计.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第三章 图形的平移与旋转生活中的旋转一、学生起点分析学生在七年级下学期已经学习了“生活中的轴对称” 一节,而且在本章的第一节,学生又经历了探索图 形平移性质的过程,已 经积 累了相当的图形变换的数学活动经验,同时八年级学生 逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。二、教学任务分析图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。教材从

2、学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“ 图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“ 圆”的知识内容做好铺垫。教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及 动手操作、画图等过程,掌握有关画图的操作技能, 发 展初步的审美能力,增

3、强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是, 对应点到旋转中心的距离相等.三、教学过程设计第一环节 创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出 课题:“生活中的旋转 ”。向学生展示有关的图片:(1)时钟上的秒 针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动 ;

4、(3)飞速转动的 电风扇叶片;(4)汽车上的括水器;(5)由平面 图形转动而产生的奇妙图案。第二环节 探索新知,形成概念1.建立旋转的概念(1) 试一试,请同学们尝试用自己的语言来描述以下旋转.问题:单摆上小球的转动由位置 A 转到 B,它 绕着哪一个点转动?沿着什么方向(顺时针或逆时针) ?转动了多少角度?图 1:在同一平面内,点 A 绕着定点 O 旋转某一角度得到点 B;图 2:在同一平面内,线段 AB 绕着定点 O 旋转某一角度得到线段 CD;图 3:在同一平面内,三角形 ABC 绕着定点 O 旋转 某一角度得到三角形 DEF。观察了上面图形的运动,引导学生归纳图形旋转的概念;像这样,把

5、一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转(rotation).点 O 叫做旋转中心,转动的角叫做旋转角。抽象出点的旋转A B(图 1)O抽象出三角形的旋转OABCFDE(图 3)抽象出线的旋转OABCD(图 2)重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。(2)情景问题:请同学们观 察图 3,点 A,线段 AB,ABC 分别转到了什么位置?请找出图 3 中其他的对应 点、对应线段、对应角,并指出旋转中心和旋转角度。 设计意图:点明图形旋转中对应点、对应线段及对应角的概念;让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。2应用旋转的概念

6、解决问题这一环节让学生进行问题的研究与解答,培养应用数学知识的意识及解决数学问题的能力。1 如图,ABO 绕点 O 旋转得到CDO,则:点B的 对应点是点_;线段OB的对应线段是线段_;线段 AB 的对应线段是线段_;A的对应角是 _;B 的对应角是_;旋转中心是点_;旋转的角是 _ 。设计意图: 及时巩固新知,使每个学生都有收获; 感受成功的喜悦,肯定探索活动的意义。(2) 如图,如果正方形 CDEF 与正方形 ABCD 是一边重合的两个正方形,那么正CABO D方形 CDEF 能否看成是正方形 ABCD 旋转得到?如果能,请指出旋转中心、旋转方向、旋转角度及对应点。(3) 如图,香港特别行

7、政区区旗中央的紫荆花图案由 5 个相同的花瓣组成,它是由其中的一瓣经过几次旋转得到的?旋转角AOB 多少度?你知道COD等于多少度吗? 设计意图:加深对旋转概念的理解,及时巩固新知识,对于第 2 题要注重引导学生多角度分析解决,第 3 题求 AOB 的度数学生可以根据五分周角容易得到,而学生在求 COD 的度数时,更多的是凭数学直觉或猜测。由此,可以比较自然地引导学生通过实验操作,利用度量等方法去探究旋转的有关性质。第三环节 实践操作,再探新知做一做:DCABEFABO DCOABCFDE如图,在硬纸板上,挖出一个三角形ABC,再挖一个小洞 O 作 为旋转中心,硬纸板下面放一张白纸。先在 纸上

8、描出这个挖掉的三角形图案(ABC),然后围绕旋转中心转动硬纸板,再描出 这个挖掉的三角形( DEF),移开硬纸板。问题:请指出旋转中心和各对应点,哪一个角是旋转角?1从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?2在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?量一量线段 OA 与线段 OD 的关系怎样(这里包括数量关系和位置关系),线段 OB 和 OE,OC 和 OF 呢? AB 与 DE 呢?3你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?探索得出下列性质:1旋转前后的图形全等;2对应点到旋转中心的距离相等;3对应点与旋转中心连线段的夹角等于旋转角。第四

9、环节 巩固新知,形成技能1如图,如果把钟表的指针看做四边形 AOBC,它绕 O 点旋转得到四边形DOEF.在这个旋转过程中: (1)旋转中心是什么? (2)经过旋转,点 A,B 分别移动到什么位置?(3)旋转角是什么?OABDEC F(4)AO 与 DO 的长有什么关系?BO 与 EO 呢?(5)AOD 与 BOE 有什么大小关系?2如图,正方形 ABCD 中,E 是 AD 上一点,将CDE 逆时针旋转后得到 CBM.如连 接EM,那么CEM 是怎样的三角形?3如图:P 是等 边 ABC 内的一点,把 ABP 通过旋转分别得到 BQC 和ACR,(1)指出旋转中心、旋转方向和旋转角度?(2)

10、ACR 是否可以直接通 过把 BQC 旋转得到?目的是让学生通过观察图形的特点,发现图形的旋转关系,巩固旋转的性质。2 若 PA=5,PC=4,PB=3,则 PQC 是什么三角形?第五环节 回顾反思,深化提高引导学生从以下几个方面进行小结:这节课你学到了什么?对自己的学习情况进行评价。CA BDEMARPBQC第六环节 分层作业,促进发展A 类:课本习题 3.4 第 1,2,3 题;观察你周围的生活实际,再寻找几个利用旋转的例子;选做 试一试的第 2 题。B 类:课 本习题 3 .4 第 2 题;试一试的第 2 题;在网上收集一些用旋转制作的漂亮图案,再 试着用今天学到的旋 转知识自己设计一个

11、漂亮的图案。C 类:课 本习题 3 .4 第 2 题;试一试的第 2 题;用学过的有关对称、平移、旋转知识设计一个漂亮的班徽,并要求用简练的语言说明所设计班徽的含义。四、教学设计反思本设计力图:以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知 规律。具体设计中突出了以下构想:1 创设情境,引人入胜首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。2 过程凸现,紧扣重点旋转概念的形成过程及旋转性质得

12、到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后 归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力,引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。3 动态显现,化难为易教学活动中有声、有色、有动感的画面,不 仅叩开学生思 维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主 动的、轻松愉快的获得新知。4 例子展现,多方渗透为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,培养学生的发散思维,也增强学生用数学的意识。学优 中考 ,网

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报