收藏 分享(赏)

《一次函数的性质和图像》教案1(新人教b版必修1).doc

上传人:无敌 文档编号:514311 上传时间:2018-04-09 格式:DOC 页数:4 大小:258.50KB
下载 相关 举报
《一次函数的性质和图像》教案1(新人教b版必修1).doc_第1页
第1页 / 共4页
《一次函数的性质和图像》教案1(新人教b版必修1).doc_第2页
第2页 / 共4页
《一次函数的性质和图像》教案1(新人教b版必修1).doc_第3页
第3页 / 共4页
《一次函数的性质和图像》教案1(新人教b版必修1).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.2.1 一次函数的性质与图像 教案一、 教学目标1掌握利用两个适当的点画出一次函数的图象;2结合图象,使学生理解掌握一次函数的性质;3提高探索新问题的能力,动手能力及现代化操作技术能力。4初步了解数形结合。二、重点、难点重点:一次函数的图象与性质难点:对一次函数 中 的数与形的联系的理解)0,(kbkxy为 常 数 b,三、教学方法“实践探究、启发引导、归纳概括” 的引导探究法四、 教学过程创设情境,引入课题 前面我们己学习了一次函数的概念,一般地,如果 ,那么)0,(kbkxy为 常 数叫 的一次函数。特别地:当 时,一次函数就变成了正比例函数yx0b。)0,(kk为 常 数在同一直角坐

2、标系中投影出 的函数图象,让学生观察13,3, xyxy它们的图象都是直线并引入课题。所有的一次函数的图象都是直线。因此要画一次函数的图象一条直线,就没有必要把所有的点都描出来,只要描出两个点就可以了,因为两个点确定一条直线。利用这个结论,我们可以更快地作出一次函数的图象,并对它的性质进行研究。描点画图,归纳画法【过渡】下面我们一起来画首先共同画出正比例函数 与 的图象。并xy5.0x.由此归纳出正比例函数 的图象为过 和 两点的直线。)0,(kkxy为 常 数 ),(,1k观察图象、研究性质然后提出问题 1:让学生自己画图,研究正比例函数有何性质?即正比例函数中, 对函数图象有何影响?并填写

3、实验报告(课前印好发给学生,)0,(kkxy为 常 数或者学生在网络上填写) 。研究问题 1 时,我首先通过几何画板与学生共同归纳正比例函数 与xy5.0的图象性质,特别是 随 的变化趋势。xy5.0yx打开几何画板,进行演示。点在直线上运动,对应着 轴上射影(用红点显示)、 轴xy上的射影(用绿点显示)同时运动。从左到右拖动红点,使点的横坐标从小到大变化,红点的运动引起绿点的运动,绿点的运动又使点的纵坐标发生变化。在演示的同时,启发学生注意观察坐标的变化并得到:对于 , 随 的增大而增大;对于 , 随xy5.0 xy5.0y的增大而减小。x然后把学生分成两人一组,进行继续用几何画板研究其它正

4、比例函数的性质,并把结论发到网络的“展示区”上。填写实验报告如下:实验报告: 对正比例函数 的图象的影响。k )0,(kkxy为 常 数2,15.0,2在实验报告的基础上,让学生利用几何画板动手实验:拖动点 N,让 的值连续变化,k引导学生观察正比例 的图象的变化并归纳出它的性质:)0,(kkxy为 常 数当 时,图象在 1,3 象限, 随 的增大而增大;0yx当 时,图象在 2,4 象限, 随 的增大而减小。为了达到及时巩固的效果,归纳之后进行练习 1。练习 1 结合课本练习,培养学生的数形结合能力。第 1、2、3 题都是由函数解析式判断图象的性质;第 4 题是由函数图象性质判断函数的解析式

5、。并通过填空、选择的形式,让学生进行自我评价。 (1)做完练习 1 后,会显示每道题目的答案正确与否,同时根据学生练习完成的情况,给出鼓励性评价;(2)老师可以对全体学生练习情况进行即时统计,从而进行针对性教学;(3)练习完成的好的学生可以进入英雄榜,让学生更乐于学习。类比联想、探索性质首先学习例 3:在同一直角坐标系中画出 与 的图象。在画图的12xy12xy解析式 图象示意图 图象所在的象限 随 的变化趋势yxxy.1,3 象限 随 的增大而增大1,3 象限 随 的增大而增大0k21,3 象限 随 的增大而增大yxxy2,4 象限 随 的增大而减小2,4 象限 随 的增大而减小0k5.0在

6、刚才所画 xy5.0直角坐标系中分别画出,图象如下所示。 2,4 象限 随 的增大而减小yxxyo=0.5xy=2xy=xyxyo=-0.5xy=-xy=-2xy过程中利用表格(如下):解析式 与 轴的交点y与 轴的交点x12xy)1,0()0,21(,bkxy),(),(kb归纳出一次函数 为过 和 两点的直线。0,k为 常 数 ,0,然后提出问题 2:讨论一次函数 中, 对函数图象有何),(kbxy为 常 数 b影响? 在解决问题 2 时,首先抓住正比例函数是一次函数的特殊情况,让学生了解这一关系并从中直接得出一次函数性质。然后利用网络让学生动手实验:先固定 的值,拖动滑板,让 的值连续变

7、化,观察图象的变化,归纳出一次函数bk的性质:)0,(kkxy为 常 数当 时, 随 的增大而增大;yx当 时, 随 的增大而减小。再固定 的值,拖动滑板,让 的值连续变化,观察图象的变化,归纳出 的变化引kb b起图象变化规律:一次函数 图象与 轴的交点为 。)0,(kkxy为 常 数 y),0(练习反馈、巩固性质为了加强学生对“数”与“形”的双向沟通,我在课本练习基础上设计了一些“由数到形”及“由形到数”的题目,供学生练习。练习 2 采用题组分层次教学,先后通过A、B、C 三组(9 题)进行练习,每组题均由浅入深,各有针对性。A 组题为只考虑一个常数 的题目;bB 组题为只考虑一个常数 的题目;kA、B 两组题为必做题;C 组综合考虑两个常数 与 的题目,C 组题为选做题。这样遵循循序渐进的规律进行题组教学,顾及到了各个层次的学生,达到了预期的目的。小结归纳,揭示规律先由学生归纳,再由老师总结,培养学生的归纳能力。(1)正比例函数 的图象的画法:过原点与点 的直线即所)0,(kkxy为 常 数 ),1(k求的图象;(2)一次函数 图象的画法:在 轴上取点 ,在 轴),(b为 常 数 y),0(bx上取点 ,过这两点的直线即所求的图象;)0,(kb(3)正比例函数 与一次函数 的性)0,(kkxy为 常 数 )0,(kbkxy为 常 数质。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报