1、2.解一元一次方程第 1 课时 一元一次方程的解法(1)【知识与技能】1.一元一次方程的定义.2.了解如何去括号解方程.3.了解去分母解方程的方法.【过程与方法】通过对方程变形的分析,探索求解简单方程的规律.【情感态度】培养学生体会数学价值的目的.【教学重点】1.一元一次方程的定义;2.解一元一次方程的步骤.【教学难点】灵活使用变形解方程.一、 情境导入,初步认识上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析)4+x=7;3x+5=7-2x ;y-2/6=y/3+1;x+y=10;x+
2、y+z=6;x 2 -2x-3=0;x3-1=0.【教学说明】让学生观察这几个方程,使学生初步感知一元一次方程特别之处.二、思考探究,获取新知1.比较一下,第一行的方程(即前 3 个方程)与其余方程有什么区别?(学生答)可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数, “次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答)【归纳结论】只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是 1,这样的方程叫做一元一次方程.【教学说明】谈到次数的方程都是指整式方程,即方程的两边都是整式.像2
3、x=3 这样就不是一元一次方程.2.上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.解方程:3(x-2)1=x-(2x-1)分析:方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解:去括号 3x-6+1=x-2x+1,合并同类项 3x-5=-x+1,移项 3x+x=1+5,合并同类项 4x=6,系数化为 1 x=1.5.解方程:(x-3)/2-(2x+1)/3=1分析:只要把分母去掉,就可将方程化为上节课的类型.12 和 13 的分母为2 和 3,最小公倍数是 6,方程两边都乘
4、以 6,则可去分母.解:去分母 3(x-3)-2(2x+1)= 6,去括号 3x-9-4x-2=6,合并同类项 -x-11=6,移项 -x=17,系数化为 1 x=-17.回顾上面的解题过程,总结一下:解一元一次方程通常有哪些步骤?【归纳结论】解一元一次方程通常的一般步骤为:去分母,去括号,移项,合并同类项,系数化为 1.三、运用新知,深化理解1.下列式子是一元一次方程的有_.(1)32x+22-12x (2)x=0 .(3)1/x=1 (4)x 2+x-1=0 (5)x-x=22.解下列方程3.y 取何值时,2(3y +4)的值比 5(2y -7)的值大 3?4.当 x 为何值时,代数式(1
5、8+x)/3 与 x-1 互为相反数?【教学说明】通过习题练习来巩固提高.【答案】1.(2)2.(1)解:2x-4-12x+3=9-9x-10x-1=9-9x-10x+9x=1+9-x=10x=-10(2)解:-7(1-2x)=32(3x+1)-7+14x=18x+6-4x=13x=-13/4(3)分析:方程中有多重括号,那么先去小括号,再去中括号,最后去大括号. 8x+20=2(4x+3)-(2-3x)8x+20=8x+6-2+3x8x-8x-3x=6-2-20-3x=-16x=16/3.(5)解: 3(2-x)-18=2x-(2x+3) ,6-3x-18=-3-3x=9x=-3.(6)解:
6、6x-3(x-1)=12-2(x+2)6x-3x+3=12-2x-46x-3x+2x=12-4-35x=5x=1.3.分析:这样的题列成方程就是 2(3y+4)-5(2y -7)= 3,求 y 即可.解:2(3y+4)-5(2y-7)= 3去括号 6y +8-10y+35=3合并同类项-4y+43=3移项 -4y=-40系数化为 1 y=10.答:当 y =10 时,2(3y +4)的值比 5(2y-7)的值大 3.4.分析:两个数如果互为相反数,则它们的和等于 0,根据相反数的意义列出以 x 为未知数的方程,解方程即可求出 x 的值.为相反数.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第 11 页“练习”.2.完成练习册中本课时练习.