1、 16.3 可化为一元一次方程的分式方程(1)教学目标:1、 知识与技能:使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、 过程与方法:使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、 情感态度与价值观:使学生领会 “ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解;培养学生自主探究的意识,提高学生观察能力和分析能力。教学重点:使 学 生 理 解 分 式 方 程 的 意 义 , 会 按 一 般 步 骤 解 可 化 为 一 元 一 次 方 程 的 分 式 方 程.教学难点:使学生理解增根的概念,了解增根产生的原因,
2、知道解分式方程须验根并掌握验根的方法.教学过程:一、问题情境导入轮船在顺水中航行 80 千米所需的时间和逆水航行 60 千米所需的时间相同.已知水流的速度是 3 千米/时,求轮船在静水中的速度.分 析:设轮船在静水中的速度为 x 千米/时,根据题意,得. (1)3608概 括:方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.思 考:怎样解分式方程呢?有没有办法可以去掉分式方程中的分母把它转化为整式方程呢?试动手解一解方程(1).方程(1)可以解答如下:方程两边同乘以(x+3)(x -3),约去分母,得80(x -3)=60( x+3).解这个整式方程,得x=21.所以轮船
3、在静水中的速度为 21 千米/ 时.概 括:上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.二、例题:1、例 1 解方程: .12x解 方程两边同乘以(x 2-1),约去分母,得x+1=2.解这个整式方程,得x=1.解到这儿,我们能不能说 x=1 就是原分式方程的解(或根)呢?细心的同学可能会发现,当 x=1 时,原分式方程左边和右边的分母(x1 )与(x 21)都是 0,方程中出现的两个分式都没有意义,因此,x =1 不是原分式方程的解,应当舍去.所以原分式方程无解.我们看到,在将分式方程变形为
4、整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根) ,这种根通常称为增根.因此,在解分式方程时必须进行检验.2、例 2 解方程: .7301x解 方程两边同乘以 x(x-7),约去分母,得100(x-7)=30x.解这个整式方程,得x=10.检验:把 x=10 代入 x(x-7),得10(10-7)0所以,x=10 是原方程的解 .三、练习:P14 第 1 题四、作业:P14 习题 17.3 第 1 题(1 ) (2 ) 、第 2 题五、教学反思:、什么是分式方程?举例说明;、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程解这个整式方程.验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是 0,说明此根是原方程的根;若结果是 0,说明此根是原方程的增根,必须舍去、解分式方程为什么要进行验根?怎样进行验根?