1、10.1 相交线(第2课时),第十章 相交线、平行线与平移,沪科版 七年级 下册,在相交线的模型中,固定木条a,转动木条b,当 =90时,a与b垂直.,当b的位置变化时,a、b所成的角也会发生变化.,当 90时,a与b不垂直,叫斜交.,两条直线相交,斜交,垂直,垂直是相交的特殊情况,),a,b,b,b,b,b,),情景导入,1,3,理解垂线的定义;,会过一点画已知直线的垂线。,2,掌握垂线的性质并会应用;,学习目标,探究点一:垂线的概念,阅读教材第117页至118页,思考下列问题: 两条相交直线在什么情况下是垂直的?什么叫垂线?什么叫垂足? 2.垂线是一条直线还是线段? 3.请举出生活中垂直的
2、例子。,讲授新课,1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。,b,a,用“”和直线字母表示垂直,O,2.垂直的表示:,例如、如图,a、b互相垂直, 垂足为O,则记为:,ab或ba,若要强调垂足,则记为:ab, 垂足为O.,日常生活中,两条直线互相垂直的情形很常见,说出图中的一些互相垂直的线条.,你能再举出其他例子吗?,十字路口的两条道路,围棋盘的横线和竖线,铅垂线和水平线,A,B,C,D,O,书写形式:,如图,当直线AB与CD相交于O点,AOD=90时,ABCD,垂足为O。,判定:AOD=90(已知)AB
3、CD(垂直的定义),书写形式:,反之,若直线AB与CD垂直,垂足为O,那么,AOD=90。,性质: ABCD (已知) AOD=90 (垂直的定义),(AOC=BOC=BOD=90),3.垂直的书写形式:,例1:如图,直线AB,CD相交于点O,OECD于O, AOE:COE=1:3,求BOD的度数。,解:OECD COE=90又AOE:COE=1:3 AOE= COE=30 COA=9030=60BOD= COA=60,变式:如图,直线AB,CD相交于点O,若AO平分COE,且BOD=45,判断OE与CD的位置关系,并说明理由。,解:OE CD,问题: 这样画l的垂线可以画几条?,1放、 2靠
4、、 3画线、,l,O,如图,已知直线 l,作l的垂线。,工具:直尺、三角板,A,无数条,1.垂线的画法:,探究点二:垂线的性质,l,A,如图,已知直线 l 和l上的一点A ,作l的垂线.,B,4画线:沿着三角板的另一直角边画出垂线.,1放:放直尺,直尺的一边要与已知直线重合;,3移:移动三角板到已知点;,2靠:靠三角板,把三角板的一直角边靠在直尺上;,则所画直线AB是过点A的直线l的垂线.,l,A,如图,已知直线 l 和l外的一点A ,作l的垂线.,B,4画线:沿着三角板的另一直角边画出垂线.,1放:放直尺,直尺的一边要与已知直线重合;,3移:移动三角板到已知点;,2靠:靠三角板,把三角板的一
5、直角边靠在直尺上;,则所画直线AB是过点A的直线l的垂线.,请同学们画一下,结论: 在同一平面内,过一点有且只有一条直线与已知直线垂直.,能作一条,而且只能作一条.,问题:过已知直线 l 和l上(或外)的一点A ,作l的垂线,可以作几条?,注意:过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.,垂线的性质(1),探究点三:垂线段的性质,连接直线外一点与直线上各点的所有线段中,垂线段最短。,垂线段最短,简单说成:垂线段最短,探究点四:点到直线的距离,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。,P,l,A,例如:如图,PAl于点A ,垂线段PA的长度叫做点P
6、到直线l的距离.,例:如图,是一个同学跳远的位置跳远成绩怎么表示?,l,P,A,解:过P点作PAl于点A ,垂线段PA的长度就是该同学的跳远成绩.,1.如图1,OAOB,ODOC,O为垂足,若AOC=35,则BOD=_. 2.如图2,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_. 3.如图3,直线AB、CD相交于点O,若EOD=40,BOC=130,那么射线OE 与直线AB的位置关系是_,125,60,ABCD.,课堂练习,4. 如图所示,ACBC,CDAB于D,AC=5cm,BC=12cm,AB=13cm, 则点B到AC的距离是_,点A到BC的距离是_,点C到AB的距离是_,ACCD的依据是_,12cm,5cm,垂线段最短。,谈谈你对垂线的认识。 垂线的性质是什么?为什么这一性质要加上前提“在同一平面内”?,课堂小结,