收藏 分享(赏)

10.1相交线 课件1(沪科版七年级下).ppt

上传人:HR专家 文档编号:5588827 上传时间:2019-03-09 格式:PPT 页数:29 大小:1.58MB
下载 相关 举报
10.1相交线 课件1(沪科版七年级下).ppt_第1页
第1页 / 共29页
10.1相交线 课件1(沪科版七年级下).ppt_第2页
第2页 / 共29页
10.1相交线 课件1(沪科版七年级下).ppt_第3页
第3页 / 共29页
10.1相交线 课件1(沪科版七年级下).ppt_第4页
第4页 / 共29页
10.1相交线 课件1(沪科版七年级下).ppt_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、相交线,大胆发现,我们日常生活中有哪些直线 相交的实际例子?,畅所欲言,生活中的相交线,问题:两条相交直线.形成的小于平角的角有几个?,请你画出任意两条相交直线.看看这四个角有什么关系?,讨论,任意画两条相交直线,在形成的四个角(如图)中,两两相配共组成几对角?各对角存在怎样的位置关系?,有关概念,对顶角:如果一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角.,例题欣赏,对顶角相等.,对顶角的性质:,O,A,B,C,D,),(,1,3,4,2,),(,为什么?,已知:直线AB与CD相交于O点(如图),求证: 1=3、 2=4,证明:直线AB与CD相交于O点,1+2=180、 2

2、+3=180,1=3,同理可得:2=4,例,直线、 相交于点,=,BOC=2AOC, 求DO的度数.,A,B,C,D,F,E,举一反三,变式1:若2是1的3倍, 求3的度数? 变式2:若2-1=400, 求4 的度数?,a,b,1,2,3,4,趁热打铁,如图,三条直线a,b,c相交于点O,1=400,2=550,则3=_.,AOD,BOD,如图,直线、 相交于O,是射线.则 3的对顶角是_, 1的对顶角是_,,融会贯通:,图,A组 基础题,融会贯通,B组 能力训练 直线AB、CD交于点O,OE是AOD的平分线,已知AOC=50.求DOE的度数.,思考题: 两条直线相交于一点,有几对对顶角? 三

3、条直线相交于一点,有几对对顶角? 四条直线相交于一点,有几对对顶角?n 条直线相交于一点,有几对对顶角?,垂线,观察:两条直线相交形成4个角,若固定木条a,旋转木条b,当b的位置发生变化时,a、b所成的角也会随之变化,其中有一个特殊的位置: 90 .,活动1,1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足.,b,a,用“”和直线字母表示垂直,O,2.垂直的表示:,例如、如图,a、b互相垂直, 垂足为O,则记为:,ab或ba,若要强调垂足,则记为:ab, 垂足为O.,A,B,C,D,O,书写形式:,如图,当直线A

4、B与CD相交于O点,AOD=90时,ABCD,垂足为O.,AOD=90(已知) ABCD(垂直的定义),书写形式:,反之,若直线AB与CD垂直,垂足为O,那么,AOD=90.,3.垂直的书写形式:, ABCD (已知) AOD=90 (垂直的定义),应用垂直的定义:,AOC=BOC=BOD=90,活动2,(1)现有一条已知直线AB,分别过直线外一点C和直线上一点D,画AB的垂线,你有几种画法?,(2)通过上述方法画出的垂线有几条? 从中你能发现什么结论?,经过直线外一点,有且只有一条直线与已知直线垂直.,点到直线的距离,看图回答,你能用一句话表示这 个结论吗?,m 的垂线段PB 的长度叫做点P

5、 到 直线m 的距离.,连接 直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短,线段PA, PB, PC , PD谁最短?,性质,怎样测量点到直线的距离?,B,如图,怎样测量 点A 到 直线m 的距离?,如图:在铁路旁边有一张庄,现在要建一火车站,为了使张庄人乘火车最方便(即距离最近),请你在铁路上选一点来建火车站,并说明理由.,张庄,拓展应用1,m,拓 展 应 用2,如图:要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟的长度才能最短? 请画出图来,并说明理由.,C,拓展应用3,如图,一辆汽车在直线公路AB上由A向B行驶,M、N分别位于公路两侧的村庄 (1)设汽车行

6、驶到公路AB上点P的位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出点P和点Q 的位置. (2)当汽车从A出发向B行驶时,在公路的哪一段上距离M、N两村庄都越来越近?在哪一段公路上距离村庄N越来越近,而离村庄M越来越远?(用文字表述你的结论),立定跳远中,体育老师是如何测量运动员的成绩的?,体育老师实际上测量的是点到直线的距离,小常识,巩固练习,(1)如何画一条线段或一条射线的垂线?,(2)如图,直线AB、CD相交于点O,OEAB,且DOE=3COE,求AOD的度数.,例1 如图,直线AB、CD相交于点O,OEAB,1=55,求EOD的度数.,A,C,E,B

7、,D,O,1, EOB=90(垂直的定义), EOD=EOB+BOD=90+55=145,(,解:, ABOE (已知),BOD=1=55(对顶角相等),例2 如图,直线AB、CD相交于点O,OEAB于O,OB平分 DOF,DOE=50,求AOC、 EOF、 COF的度数.,A,C,E,B,D,O, EOB=90(垂直的定义),COF=CODDOF=18080=100 (邻补角定义),解:, ABOE (已知), AOC= DOB=40(对顶角相等),F, DOE= 50 (已知), DOB=40(互余的定义),又OB平分DOF, BOF= DOB=40(角平分线定义), EOF= EOB+ BOF=90+40=130,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报