收藏 分享(赏)

9.6《因式分解》(二)(第1课时)教案(苏科版七年级下).doc

上传人:weiwoduzun 文档编号:4825262 上传时间:2019-01-14 格式:DOC 页数:7 大小:105KB
下载 相关 举报
9.6《因式分解》(二)(第1课时)教案(苏科版七年级下).doc_第1页
第1页 / 共7页
9.6《因式分解》(二)(第1课时)教案(苏科版七年级下).doc_第2页
第2页 / 共7页
9.6《因式分解》(二)(第1课时)教案(苏科版七年级下).doc_第3页
第3页 / 共7页
9.6《因式分解》(二)(第1课时)教案(苏科版七年级下).doc_第4页
第4页 / 共7页
9.6《因式分解》(二)(第1课时)教案(苏科版七年级下).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、学优中考网 9.6 乘法公式再认识因式分解(二)第 1 课时运用平方差公式进行分解因式一、教学目标:1. 使学生进一步理解因式分解的意义.2. 使学生理解平方差公式的意义,弄清公式的形式和特征.3. 会运用平方差公式分解因式.4. 通过对比整式乘法和分解因式的关系,进一步发展学生的逆向思维能力.5. 感受整式乘法和分解因式矛盾的对立统一观点.6. 培养学生积极主动参与探索的意识以及观察能力.7. 感悟换元的思想方法.说明 以前学习运用公式法分解因式,主要的评价手段是能否牢记公式的特点,在运用公式解题时过分地追求问题的熟练和技巧,无形之中影响了学生学习数学的兴趣和信心.现在我们试图先通过对具体的

2、数字运算或简单图形的面积计算让学生对公式有一个感性认识,让学生在与同伴交流中思考、感悟,使学生内心产生解决问题的欲望,从而进一步上升到理性认识.这种设计更符合学生从“特殊到一般” 、从“具体到抽象”的认知特点.二、教学重点、难点:1. 理解平方差公式的意义,弄清公式的形式和特征.2. 会运用平方差公式对某些多项式进行分解因式三、教具、学具:投影仪、条件较好的使用多媒体演示四、教学过程:来源:xyzkw.Com(一)设置情景:情景 1:小组讨论:99 21 是 100 的整数倍吗?你是怎样想的?说明:学生可能直接计算出结果,应予以肯定.在这儿可以设计系列问题予以引导:学优中考网 1.判断某个数是

3、否是另一个数的整数倍可以怎么判断?如:12 是 3 的整数倍吗?(学生知道就是把 12 分解因数.)2.类似地要判断 9921 是 100 的整数倍呢?也可以想到尝试分解.3.9921 可以写成(99+1) (991)吗?为什么可以这么写?999 21 可以吗?4.a21 可以写成( a+1)(a1)吗?5.a24 可以写成乘积形式吗?你认为可以写成什么样子呢?6.a2b 2 呢?情景 2:和老师比一比,看谁算的又快又准确:57 256 2 96295 2( )2( )25178说明:算式的设计要体现出运用分解计算的简便性,以激发学生的好奇心和求知欲.问:为什么你们没有老师算的快呢?你想知道老

4、师是怎么计算的吗?思考:在以上的这些算式中,你发现他们有什么共同点?用自己的语言说一说.情景 3:计算图中的阴影部分面积(用 a、b 的代数式表示)问题一:整体计算可以怎样表示?问题二:分割成如图两部分可以怎样计算?问题三:比较两种计算的结果你有什么发现?说明:学生可能先分割再整体得出:(a+b)(ab)=a 2b 2 (1)也有的是先整体再分割得出 a2b 2=(a+b)(ab) (2)两种形式加以比较进一步明确整式乘法和因式分解的关系.思考:1.对于(1)式从左边到右边的变形叫什么?2.对于(2)式从左边到右边的变形叫什么?3.我们已经学习提公因式法分解因式.在(2)式的左边有公因式吗?但

5、它写成右边的形式是分解因式吗?可见,没有公因式的某些多项式也可以用别的方法分解.(二)平方差公式的特征辨析:把乘法公式(a+b)(a b)=a 2b 2 反过来得:a 2b 2=(a+b)(ab)学优中考网 我们可以运用这个公式对某些多项式进行分解因式.这种方法叫运用平方差公式法.议一议 :下列多项式可以用平方差公式分解吗?(1)x 2y 2 (2)x 2+y2 (3)x 2y 2 (4)x 2+y2 (5)64a 2 (6)4x 29y 2说明:这里是学生自主辨析公式特点的好机会,一定让学生自己讨论,只要能辨别哪些能用公式就可以,教师在具体使用时,可以先出示前面 4 道题,为了降低难度可以先

6、把第 5 题写为 82a 2 然后改写成 64a 2 形式,让学生体会转化的数学思想 .对于最后一题若学生对幂的运算较生疏,可以适当补充练习,如:填空:4a 2=( )2 b2=( )942 x2y2=( )2.进而让学生自己体会公式中的 a 与 b 可以表示一个数,也可以表示一个式子,渗透换元的思想方法.最后,教师可以用简练的语言总结平方差公式的特点:1.左边特征是:二项式,每项都是平方的形式,两项的符号相反.2.右边特征是:两个二项式的积,一个是左边两项的底数之和,另一个是这两个底数之差.3.在乘法公式中,平方差是指计算的结果,在分解因式时,平方差是指要分解的多项式.(三)例题教学例 1

7、把下列多项式分解因式:(1) 3625x 2 (2) 16a29b 2分析:观察是否符合平方差公式的形式,应引导学生把 36、25x 2、16a 2、9b 2 改写成 62、(5x) 2、 (4a)2 和(3b) 2 形式,能否准确的改写是本题的关键.解: 3625x 2=62(5x) 2=(6+5x)(65x)16a29b 2=(4a)2(3b) 2=(4a+3b)(4a 3b)说明: (1)对于多项式中的两部分不是明显的平方形式,应先变形为平方形式,再运用公式分解,以免出现 16a29b 2=(16a+9b)(16a9b) 的错误.(2)在此还要提醒防止出现分解后又乘开的现象,这是旧知识的

8、“倒摄作用”所学优中考网 引起的现象.例 2 如图,求圆环形绿化区的面积.解: 35215 2=(35 215 2)=(35+15)(35 15)=5020=1000 (m2)这个绿化区的面积是 1000m 2说明:在这里列出算式后可以让学生自己讨论怎么计算,要让学生解释他的解法,可能解释为逆运用乘法结合律,也可能解释为合并同类项,都要予以肯定,在这儿不要怕浪费时间,通过比较得出上述解法和前一节的提取公因式是一致的,从而为分解因式的一般步骤打下伏笔,即:先提公因式,再运用公式.来源:学优中考网 xyzkw例 3 把下列多项式分解因式:1. (x+p)2(x+q) 2 2. 9(a+b)24(a

9、 b) 2 分析:在这里,尤其要重视对运用平方差公式前的多项式观察和心算,而后是进行变形.这一点在这儿尤为重要.解: (x+p)2 (x+q)2=(x+p)+(x+q)(x+p)(x+q) =(2x+p+q)(pq)9(a+b)24(a b)2 =3(a+b)22(ab) 2=3(a+b)+2(ab) 3(a+b)2(ab)=(5a+b)(a+5b)说明:设计本题的目的是让学生加深平方差公式中的 a、b 不仅可以表示数字、单项式,也可以是多项式,进一步渗透整体、换元的思想.例 4.(供选择)观察下列算式回答问题:321=8学优中考网 521=24=83721=48=86921=80=810问:

10、根据上述的式子,你发现了什么?你能用自己的语言表达你所发现的结论吗?你能用数学式子来说明你的结论是正确的吗?解: 任意一个奇数的平方与 1 的差是 8 的整数倍.(2n+1)21 =(2n+1)+1(2n+1)1= (2n+2)2n来源:xyzkw.Com=2(n+1)2n =4n(n+1)因为 n 是整数,所以 n、n+1 是两个连续的整数,而两个连续的整数一定有一个是偶数,即 n(n+1)是 2 的倍数,因此 4n(n+1)是 8 的倍数 .(四)练习1.下列分解因式是否正确:(1)x 2y 2=(x+y)(x y)(2)925a 2=(3+25a)(3+25b)(3)4a 2+9b2=(

11、2a+3b)(2a3b)2.把下列各式分解因式:来源:学优中考网 xyzkw(1) 36x 2 (2) a2 b2 (3) x216y 291(4) x2y2z 2 (5) (x+2)29 (6)(x+a) 2(y+b) 2(7) 25(a+b)24(ab) 2 (8) 0.25(x+y)20.81(xy) 23.在边长为 16.4cm 的正方形纸片的四角各剪去一边长为 1.8cm的正方形,求余下的纸片的面积.4.已知 x2y 2=1 , x+y= ,求 xy 的值.21(五)小结学生自己说出通过本节课的学习进一步理解了整式的乘法与因式分解的关系.能用学优中考网 自己的语言说出平方差公式的特点.能体会出公式中的字母 a、b 不仅可以表示数字,而且可以是单项式、多项式.(六)作业1.课本 P95 习题 9.6 第一题 .2.课本 P95 习题 9.6 第二题 .3.课本 P95 习题 9.6 第六题的第一题选做利用因式分解计算:(1) 22013(2)(1 )(1 )(1 )(1 )(1 )来源:学优中考网2429120(3)已知:4m+n=90,2m3n=10 ,求(m+2n) 2(3mn) 2 的值.学优中考网 学)优中 考,网

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报