1、2019/1/10,1,2010年数学建模暑假培训讲座,2019/1/10,2,浅谈数学建模,一、对数学建模竞赛的认识二、 数学建模实践活动三、 对大学生科技能力的培养,2019/1/10,3,一、对数学建模竞赛的认识,1、作题与一般的培训 作题利用已有知识可以解决,与知识及知识量有关,其过程有利于掌握知识。作题有一个可以作的潜在假设。 培训 增加知识,以知识为基础解题,基本是老师主导。 2、作事与实践 作事 对象是问题,以自身知识和能力为基础,其过程是锻炼和发挥综合素质。 实践 作事的过程可称为实践。对问题,只能说依其能力和知识可以给予一定程度的解决,不保证已有知识够用。 3、数模竞赛与实践
2、数模竞赛是一个实践过程,不是解题过程。,2019/1/10,4,二、数学建模实践活动,1、投入与效益 投入 以老师和同学都要投入大量的时间和精力为前提。 效益 投入的效益不单纯体现在知识的程度上,主要体现在使学生有作科研的经历,使教师有机会提高学术水平,真正做到教学相长。2、选择实践活动内容的原则 学术的先进性文献要新 大学生的可接受性思想性强,所用研究技术相对初等 有较大的提问题空间开放性选题,不是小品类选题,2019/1/10,5,二、数学建模实践活动,3、选题过程中常遇到的困境和解决思路 学术先进性与学生的知识及技术水平的可承受性.以学生的已有知识和应具有的能力为基础。 教师所从事专业与
3、所选课题内容的一致性,若一致更好,若不一致,以学生的可接受性为基础,把相应研究首先看成教学成果其次为科研成果,接受成果所属分类分散的事实。 学生所学专业与所选内容的一致性不以专业知识作为选题依据,不引导其作专业研究,而是提供一个作科学研究的机会。 教师的知识面宽度与选题内容的丰富度的关系显然,知识面宽时丰富度就宽,这是以教师掌握为前提的,其次,很多时候教师要以阅历为前提判断一个选题的水平及可接受性,然后和同学一起学习课题内容,做到教学相长。,2019/1/10,6,二、数学建模实践活动,目标: 1、数学建模培养的是意识与理念; 2、数学建模活动不仅仅是一个简单的培训、竞赛活动。-可以看做是知识
4、积累的过程。 (1)大学生创新计划、暑期班; (2)发表学术论文; (3)参加其他的竞赛活动; (4)敢想敢做的态度。,2019/1/10,7,数据处理与数据建模方法,2019/1/10,8,21世纪的社会是信息社会,其影响最终将要比十九世纪由农业社会转向工业社会更加深刻。“一个国家总的信息流的平均增长与工业潜力的平方成正比”。信息资源与自然资源和物质资源被称为人类生存与发展的三大资源。,数据处理与数据建模方法,2019/1/10,9,实际中大量信息或海量信息对应着大量的数据或海量数据,从这些数据中寻求所需要的问题答案-数据建模问题。通过实际对象过去或当前的相关信息,研究两个方面问题:(1)分
5、析研究实际对象所处的状态和特征,依此做出评价和决策;(2)分析预测实际对象未来的变化状况和趋势,为科学决策提供依据。,数据处理与数据建模方法,2019/1/10,10,数据处理与数据建模方法,1. 数据建模的一般问题,2. 数据处理的一般方法,3. 数据建模的综合评价方法,4. 数据建模的动态加权方法,. 数据建模的综合排序方法,. 数据建模的预测方法,2019/1/10,11,实际对象都客观存在着一些反映其特征的相关数据信息; 如何综合利用这些数据信息对实际对象的现状做出综合评价,或预测未来的发展趋势,制定科学的决策方案? -数据建模的综合评价、综合排序、预测与决策等问题。,数据建模一般问题
6、的提出:,一、数据建模的一般问题,一般,2019/1/10,12,综合评价是科学、合理决策的前提。 综合评价的基础是信息的综合利用。 综合评价的过程是数据建模的过程。 数据建模的基础是数据的标准化处理。,一、数据建模的一般问题,如何构成一个综合评价问题呢?,2019/1/10,13,依据相关信息对实际对象所进行的客观、公正、合理的全面评价。如果把被评价对象视为系统,则问题:在若干个(同类)系统中,如何确定哪个系统的运行(或发展)状况好,哪个状况差?即哪个优,哪个劣?一类多属性(指标)的综合评价问题。,综合评价:,一、数据建模的一般问题,2019/1/10,14,综合评价问题的五个要素,(1)被
7、评价对象:被评价者,统称为评价系统。(2)评价指标:反映被评价对象的基本要素,一起构成评价指标体系。原则:系统性、科学性、可比性、可测性和独立性。(3)权重系数:反映各指标之间影响程度大小的度量。(4)综合评价模型:将评价指标与权重系数综合成一个整体指标的模型。(5)评价者:直接参与评价的人。,2019/1/10,15,综合评价过程的流程,2019/1/10,16,二、数据处理的一般方法,1. 数据类型的一致化处理方法,极大型:期望取值越大越好;极小型:期望取值越小越好;中间型:期望取值为适当的中间值最好;区间型:期望取值落在某一个确定的区间 内为最好。,什么是一致化处理?为什么要一致化?,2
8、019/1/10,17,二、数据处理的一般方法,1. 数据类型的一致化处理方法,2019/1/10,18,二、数据处理的一般方法,1. 数据类型的一致化处理方法,2019/1/10,19,2. 数据指标的无量纲化处理方法,(3)功效系数法:,二、数据处理的一般方法,(1)标准差法:,(2)极值差法:,2019/1/10,20,二、数据处理的一般方法,3. 模糊指标的量化处理方法,在实际中,很多问题都涉及到定性,或模糊指标的定量处理问题。诸如:教学质量、科研水平、工作政绩、人员素质、各种满意度、信誉、态度、意识、观念、能力等因素有关的政治、社会、人文等领域的问题。,如何对有关问题给出定量分析呢?
9、,2019/1/10,21,按国家的评价标准,评价因素一般分为五个等级,如A,B,C,D,E。如何将其量化?若A-,B+,C-,D+等又如何合理量化?根据实际问题,构造模糊隶属函数的量化方法是一种可行有效的方法。,二、数据处理的一般方法,3. 定性指标的量化处理方法,2019/1/10,22,假设有多个评价人对某项因素评价为A,B,C,D,E共5个等级: v1 ,v2 ,v3 ,v4,v5。譬如:评价人对某事件“满意度”的评价可分为 很满意,满意,较满意,不太满意,很不满意 将其5个等级依次对应为5,4,3,2,1。这里为连续量化,取偏大型柯西分布和对数函数作为隶属函数:,二、数据处理的一般方
10、法,2019/1/10,23,二、数据处理的一般方法,3. 定性指标的量化处理方法,2019/1/10,24,二、数据处理的一般方法,3. 定性指标的量化处理方法,根据这个规律,对于任何一个评价值,都可给出一个合适的量化值。据实际情况可构造其他的隶属函数。如取偏大型正态分布。,2019/1/10,25,模糊定性指标量化的应用案例,(1)CUMCM2003-A,C:SARS的传播问题 (2)CUMCM2004-D:公务员招聘问题; (3)CUMCM2005-B:DVD租赁问题; (4)CUMCM2008-B:高教学费标准探讨问题; (5)CUMCM2008-D:NBA赛程的分析与评价问题; (6
11、)CUMCM2009-D:会议筹备问题。,2019/1/10,26,三、数据建模的综合评价方法,适用条件:各评价指标之间相互独立。对不完全独立的情况,其结果将导致各指标间信息的重复,使评价结果不能客观地反映实际。,1. 线性加权综合法,主要特点:(1)各评价指标间作用得到线性补偿;(2)权重系数的对评价结果的影响明显。,2019/1/10,27,2. 非线性加权综合法,三、数据建模的综合评价方法,主要特点: (1)突出了各指标值的一致性,即平衡评价指标值较小的指标影响的作用; (2)权重系数大小的影响不是特别明显,而对指标值的大小差异相对较敏感。,2019/1/10,28,三、数据建模的综合评
12、价方法,3. 逼近理想点(TOPSIS)方法,2019/1/10,29,三、数据建模的综合评价方法,3. 逼近理想点(TOPSIS)方法,2019/1/10,30,返回,三、数据建模的综合评价方法,3. 逼近理想点(TOPSIS)方法,2019/1/10,31,综合评价方法的应用案例,(1)CUMCM1993-B:足球队排名问题; (2)CUMCM2001-B:公交车调度问题; (3)CUMCM2002-B:彩票中的数学问题; (4)CUMCM2004-D:公务员招聘问题; (5)CUMCM2005-A:长江水质的评价和预测问题; (6)CUMCM2005-C:雨量预报方法评价问题; (7)C
13、UMCM2006-B:艾滋病疗法评价与预测问题; (8)CUMCM2007-C:手机“套餐”优惠几何问题; (9)CUMCM2008-B:高教学费标准探讨问题; (10)CUMCM2008-D:NBA赛程的分析与评价问题; (11)CUMCM2009-D:会议筹备问题。,2019/1/10,32,四、数据建模的动态加权综合方法,1. 动态加权问题的一般提法,问题:如何对n个系统做出综合评价呢?,2019/1/10,33,四、数据建模的动态加权方法,注意: 问题对于每一个属性而言,既有不同类别的差异,同类别的又有不同量值的差异。对于既有“质差”,又有“量差”的问题,合理有效的方法是动态加权综合评
14、价方法。,1. 动态加权问题的一般提法,2019/1/10,34,四、数据建模的动态加权方法,2. 动态加权函数的设定,2019/1/10,35,四、数据建模的动态加权方法,2. 动态加权函数的设定,2019/1/10,36,返回,四、数据建模的动态加权方法,2. 动态加权函数的设定,2019/1/10,37,四、数据建模的动态加权方法,3. 动态加权的综合评价模型,2019/1/10,38,五、数据建模的综合排序方法,1. 综合排序问题的一般提法,问题:如何给出n个系统的最终排序结果呢?,2019/1/10,39,五、数据建模的综合排序方法,2. 综合排序问题的方法,2019/1/10,40
15、,动态加权与综合排序的应用案例,动态加权的综合排序案例: (1)CUMCM2002-B:彩票中的数学问题; (2)CUMCM2005-A:长江水质的评价和预测问题; 综合评价的排序案例: (1)CUMCM1993-B:足球队排名问题; (2)CUMCM2008-D:NBA赛程的分析与评价问题; (3)CUMCM2009-D:会议筹备问题。,2019/1/10,41,六、数据建模的常用预测方法,1.插值与拟合方法:小样本内部预测; 应用案例: (1)CUMCM2001-A:血管的三维重建问题; (2)CUMCM2003-A,C:SARS的传播问题; (3)CUMCM2004-C:饮酒驾车问题;
16、(4) CUMCM2005-A:长江水质的评价与预测; (5) CUMCM2005-D:雨量预报方法的评价; (6) CUMCM2006-B:艾滋病疗法的评价与预测。,2019/1/10,42,六、数据建模的常用预测方法,2.回归模型方法:大样本的内部预测; 应用案例: (1)CUMCM2004-A:奥运临时超市网点设计; (2)CUMCM2004-B:电力市场的输电阻塞管理; (3)CUMCM2005-A:长江水质的评价与预测; (4)CUMCM2006-B:艾滋病疗法的评价与预测; (5)CUMCM2008-B:高教学费标准探讨问题。,2019/1/10,43,六、数据建模的常用预测方法,3.灰预测GM(1,1):小样本的未来预测; (1)CUMCM2003-A:SARS的传播问题; (2)CUMCM2005-A:长江水质的评价与预测; (3)CUMCM2006-B:艾滋病疗法的评价与预测; (4)CUMCM2008-B:高教学费标准探讨问题。 4.时间序列方法:大样本的随机因素或周期特征的未来预测; (1)CUMCM2003-A:SARS的传播问题; (2)CUMCM2005-A:长江水质的评价与预测; (3)CUMCM2006-B:艾滋病疗法的评价与预测。 5.神经网络方法:大样的未来预测,2019/1/10,44,谢谢大家,