收藏 分享(赏)

生物化学与分子生物学八年制课件10.ppt

上传人:sjmd695 文档编号:4761785 上传时间:2019-01-10 格式:PPT 页数:147 大小:2.88MB
下载 相关 举报
生物化学与分子生物学八年制课件10.ppt_第1页
第1页 / 共147页
生物化学与分子生物学八年制课件10.ppt_第2页
第2页 / 共147页
生物化学与分子生物学八年制课件10.ppt_第3页
第3页 / 共147页
生物化学与分子生物学八年制课件10.ppt_第4页
第4页 / 共147页
生物化学与分子生物学八年制课件10.ppt_第5页
第5页 / 共147页
点击查看更多>>
资源描述

1、第 九 章 糖 代 谢,Carbohydrate Metabolism,第 一 节 糖代谢概况,Introdution,一、糖的主要生理功能是氧化供能,1. 氧化供能,如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。,3. 作为机体组织细胞的组成成分,这是糖的主要功能。,2. 提供合成体内其他物质的原料,如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。,二、糖的消化吸收是在小肠进行的,(一)糖的消化,人类食物中的糖主要有植物淀粉、动物糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中以淀粉为主。,消化部位: 主要在小肠,少量在口腔。,淀粉,麦芽糖+麦芽三糖 (40%) (25%),-极限糊精+异麦

2、芽糖 (30%) (5%),葡萄糖,唾液中的-淀粉酶,-葡萄糖苷酶,-极限糊精酶,消化过程,肠黏膜上皮细胞刷状缘,胃,口腔,肠腔,胰液中的-淀粉酶,食物中含有的大量纤维素,因人体内无-糖苷酶而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。,(二)糖的吸收,1. 吸收部位小肠上段,2. 吸收形式 单 糖,ADP+Pi,ATP,G,Na+,K+,小肠黏膜细胞,肠腔,门静脉,3. 吸收机制,Na+依赖型葡萄糖转运体 (Na+-dependent glucose transporter, SGLT),刷状缘,细胞内膜,4. 吸收途径,小肠肠腔,肠黏膜上皮细胞,门静脉,肝脏,体循环,S

3、GLT,各种组织细胞,GLUT,GLUT:葡萄糖转运体(glucose transporter),三、糖代谢是指葡萄糖在体内的复杂化学反应,葡萄糖吸收入血后,依赖一类葡萄糖转运体(glucose transporter, GLUT)而进入细胞内代谢。,葡萄糖,丙酮酸,H2O + CO2,乳酸,乳酸、氨基酸、甘油,糖原,核糖+ NADPH+H+,淀粉,葡萄糖代谢概况,第 二 节 葡萄糖的无氧氧化 Anaerobic Oxidation of Glucose,* 糖酵解(glycolysis):,* 乳酸发酵(lactic acid fermentation): 在缺氧条件下,葡萄糖经酵解生成的丙

4、酮酸还原为乳酸(lactate) 。,一分子葡萄糖裂解为两分子丙酮酸的过程。,* 乙醇发酵(ethanol fermentation): 在某些植物、脊椎动物组织和微生物,酵解产生的丙酮酸转变为乙醇和CO2,即乙醇发酵。,* 有氧氧化(aerobic oxidation): 在有条件下,需氧生物和哺乳动物组织内的丙酮酸彻底氧化分解为CO2和H2O,即糖的有氧氧化 。,一、糖无氧氧化反应过程分为糖酵解和乳酸生成两个阶段,* 糖无氧氧化的反应部位:胞浆,第一阶段是(糖)酵解,第二阶段为乳酸生成,* 分为两个阶段,由葡萄糖分解成丙酮酸(pyruvate),称为酵解途径(glycolytic path

5、way),由丙酮酸转变成乳酸,1. 葡萄糖磷酸化成为葡糖-6-磷酸,葡萄糖,葡糖-6-磷酸 (glucose-6-phosphate, G-6-P),(一)葡萄糖经酵解途径分解为两分子丙酮酸,哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为至型。 肝细胞中存在的是型,称为葡糖激酶(glucokinase)。它的特点是: 对葡萄糖的亲和力很低 受激素调控,2. 葡糖-6-磷酸转变为果糖-6-磷酸,葡糖-6-磷酸,果糖-6-磷酸 (fructose-6-phosphate, F-6-P),3. 果糖-6-磷酸转变为果糖-1,6-二磷酸,磷酸果糖激酶-1 (phosphfructokinase-1

6、,PFK-1),果糖-6-磷酸,果糖-1,6-二磷酸(1, 6-fructose-biphosphate, F-1,6-BP),果糖-1,6-二磷酸,4. 磷酸己糖裂解成2分子磷酸丙糖,5. 磷酸二羟丙酮转变为甘油醛-3-磷酸,丙糖磷酸异构酶 (triose phosphate isomerase),甘油醛-3-磷酸,磷酸二羟丙酮,上述部反应为酵解途径的耗能阶段,1分子葡萄糖的代谢消耗了2分子ATP,产生了2分子甘油醛-3-磷酸。,6. 磷酸甘油醛氧化为1,3-二磷酸甘油酸,甘油醛-3-磷酸脱氢酶 (glyceraldehyde-3-phosphate dehydrogenase),甘油醛-3

7、-磷酸,1,3-二磷酸 甘油酸,7. 1,3-二磷酸甘油酸转变成甘油酸-3-磷酸,1,3-二磷酸 甘油酸,甘油酸-3-磷酸,磷酸甘油酸激酶 (phosphoglycerate kinase),这是酵解过程中第一次产生ATP的反应,将底物的高能磷酸键直接转移给ADP生成ATP,这种ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应称为底物水平磷酸化(substrate-level phosphorylation) 。,8.甘油酸-3-磷酸转变为甘油酸-2-磷酸,磷酸甘油酸变位酶 (phosphoglycerate mutase),甘油酸-3-磷酸,甘油酸 -2-磷酸,9.甘油酸-

8、2-磷酸转变为磷酸烯醇式丙酮酸,甘油酸- 2-磷酸,10. 磷酸烯醇式丙酮酸将高能磷酸基转移给ADP形成ATP和丙酮酸,磷酸烯醇式丙酮酸,丙酮酸,这是酵解途径中的第二次底物水平磷酸化。,(二) 丙酮酸被还原为乳酸,丙酮酸,乳酸,反应中的NADH+H+ 来自于上述第6步反应中的甘油醛-3-磷酸脱氢反应。,糖酵解的代谢途径,E2,E1,E3,二、糖酵解的调控是对三个关键酶活性的调节,关键酶,调节方式,(一) 磷酸果糖激酶-1对调节酵解途径的流量最重要,别构调节,别构激活剂:AMP、ADP、 F-1,6-BP、F-2,6-2P,别构抑制剂: 柠檬酸、 ATP(高浓度),F-2,6-2P 是磷酸果糖激

9、酶-1最强的别构激活剂。,F-2,6-2P的作用是与AMP一起取消ATP、柠檬酸对磷酸果糖激酶-1的别构抑制作用。,F-6-P,F-1,6-BP,ATP,ADP,PFK-1,磷蛋白磷酸酶,PKA,目 录,(二)丙酮酸激酶是糖酵解的第二个重要的调节点,别构调节,别构抑制剂:ATP、 丙氨酸,别构激活剂:果糖-1,6-二磷酸,共价修饰调节,丙酮酸激酶,丙酮酸激酶,ATP,ADP,Pi,磷蛋白磷酸酶,(无活性),(有活性),PKA:蛋白激酶A (protein kinase A),CaM:钙调蛋白,(三) 己糖激酶受到反馈抑制调节,*葡糖-6-磷酸可反馈抑制己糖激酶,但肝葡萄糖激酶不受其抑制。,*

10、长链脂肪酰CoA可别构抑制肝葡萄糖激酶。,三、糖无氧氧化的主要生理意义是在机体缺氧状况下迅速供能,糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌肉收缩更为重要。 当机体缺氧或剧烈运动肌肉局部血流不足时,能量主要通过糖无氧氧化获得。 红细胞没有线粒体,完全依赖糖无氧氧化供应能量。 神经、白细胞和骨髓等代谢极为活跃,即使不缺氧也常由糖无氧氧化提供部分能量。,糖无氧氧化时,1mol葡萄糖可经底物水平磷酸化生成4molATP,在葡萄糖和果糖-6-磷酸磷酸化时消耗2molATP,故净生成2molATP。,第 三 节 葡萄糖的有氧氧化 Aerobic Oxidation of Glucose,葡萄糖在

11、有氧条件下彻底氧化成水和CO2的反应过程称为有氧氧化(aerobic oxidation)。,* 部位:胞液及线粒体,* 概念,一、糖的有氧氧化反应分为3个阶段,第一阶段:酵解途径,第二阶段:丙酮酸的氧化脱羧,第三阶段:三羧酸循环和氧化磷酸化,G,丙酮酸,乙酰CoA,H2O,O,ATP,ADP,TCA循环,胞液,线粒体,(一)葡萄糖循糖酵解途径分解为丙酮酸,(二)丙酮酸进入线粒体氧化脱羧生成乙酰CoA,总反应式:,丙酮酸脱氢酶复合体的组成,酶E1:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰基酶E3:二氢硫辛酰胺脱氢酶,丙酮酸脱氢酶复合体催化的反应过程:,1. 丙酮酸脱羧形成羟乙基-TPP。 2. 由

12、二氢硫辛酰胺转乙酰基酶(E2)催化形成乙酰硫辛酰胺-E2。 3. 二氢硫辛酰胺转乙酰基酶(E2)催化生成乙酰CoA, 同时使硫辛酰胺上的二硫键还原为2个巯基。 4. 二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺脱氢,同时将氢传递给FAD。 5. 在二氢硫辛酰胺脱氢酶(E3)催化下,将FADH2上的H转移给NAD+,形成NADH+H+。,CO2,CoASH,NAD+,NADH+H+,5. NADH+H+的生成,1. -羟乙基-TPP的生成,2.乙酰硫辛酰胺的生成,3.乙酰CoA的生成,4. 硫辛酰胺的生成,目 录,45,(三)乙酰CoA进入三羧酸循环以及氧化磷酸化生成ATP,三羧酸循环的第一步

13、是乙酰CoA与草酰乙酸缩合成6个碳原子的柠檬酸,然后柠檬酸经过一系列反应重新生成草酰乙酸,完成一轮循环。 经过一轮循环,乙酰CoA的2个碳原子被氧化成CO2;在循环中有1次底物水平磷酸化,可生成1分子ATP;更为重要的是有4次脱氢反应,氢的接受体分别为NAD+或FAD,生成3分子NADH+H+和1分子FADH2。,在H+/电子沿电子传递链传递过程中能量逐步释放,同时伴有ADP磷酸化成ATP,吸收这些能量储存于ATP中,即氧化与磷酸化反应是偶联在一起的,称为氧化磷酸化。 三羧酸循环中脱下的氢进入呼吸链氧化磷酸化,生成水和ATP。,二、糖有氧氧化是机体获得ATP的主要方式,三羧酸循环一次最终共生成

14、10个ATP。 1mol葡萄糖彻底氧化生成CO2和H2O,可净生成30或32molATP。,*获得ATP的数量取决于还原当量进入线粒体的穿梭机制,葡糖-6-磷酸,目 录,有氧氧化的生理意义,糖的有氧氧化是机体产能最主要的途径。它不仅产能效率高,而且由于产生的能量逐步分次释放,相当一部分形成ATP,所以能量的利用率也高。,简言之,即“供能”,三、糖有氧氧化的调节是基于能量的需求,此处主要叙述丙酮酸脱氢酶复合体的调节,别构调节,共价修饰调节,目 录,ATP/ADP或ATP/AMP比值升高抑制有氧氧化,降低则促进有氧氧化。 ATP/AMP效果更显著。,有氧氧化的调节是为了适应机体或器官对能量的需要,

15、有氧氧化全过程中许多酶的活性都受细胞内ATP/ADP或ATP/AMP比例的影响。,四、糖有氧氧化可抑制糖无氧氧化,* 概念,巴斯德效应(Pastuer effect)指有氧氧化抑制生醇发酵(或糖酵解)的现象。,第 四 节 戊糖磷酸途径 Pentose Phosphate Pathway,戊糖磷酸途径是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成甘油醛-3-磷酸和果糖-6-磷酸的反应过程。,* 细胞定位:胞 液,第一阶段:氧化反应生成磷酸戊糖、NADPH+H+及CO2,一、戊糖磷酸途径的反应过程可分为两个阶段,* 反应过程可分为二个阶段,第二阶段则:非氧化反应包括一系列基团转移,

16、6-磷酸葡萄糖酸,5-磷酸核酮糖,葡糖-6-磷酸脱氢酶,6-磷酸葡萄糖酸脱氢酶,葡糖-6-磷酸,6-磷酸葡萄糖酸内酯,(一)葡糖-6-磷酸在氧化阶段生成磷酸戊糖和NADPH,5-磷酸核糖,催化第一步脱氢反应的葡糖-6-磷酸脱氢酶是此代谢途径的关键酶。 两次脱氢脱下的氢均由NADP+接受生成NADPH + H+。 反应生成的磷酸核糖是一个非常重要的中间产物。,G-6-P,5-磷酸核糖,NADP+,NADPH+H+,NADP+,NADPH+H+,CO2,每3分子葡糖-6-磷酸同时参与反应,在一系列反应中,通过3C、4C、6C、7C等演变阶段,最终生成甘油醛-3-磷酸和果糖-6-磷酸。,(二)经过基

17、团转移反应进入糖酵解途径,这些基团转移反应可分为两类:,一类是转酮醇酶(transketolase)反应,转移含1个酮基、1个醇基的2碳基团;接受体都是醛糖。 另一类是转醛醇酶(transaldolase)反应,转移3碳单位;接受体也是醛糖。,5-磷酸核酮糖(C5) 3,5-磷酸核糖 C5,第二阶段反应的意义就在于通过一系列基团转移反应,将核糖转变成果糖-6-磷酸和甘油醛-3-磷酸而进入酵解途径。因此戊糖磷酸途径也称戊糖磷酸旁路(pentose phosphate shunt)。,磷酸戊糖途径,第一阶段,第二阶段,戊糖磷酸途径的总反应式:,3葡糖-6-磷酸 + 6 NADP+,2果糖-6-磷酸

18、+甘油醛-3-磷酸+6NADPH+H+3CO2,二、戊糖磷酸途径主要受NADPH/NADP+比值的调节,*葡糖-6-磷酸脱氢酶,此酶为戊糖磷酸途径的关键酶,其活性的高低决定葡糖-6-磷酸进入戊糖磷酸途径的流量。,此酶活性主要受NADPH/NADP+比值的影响,比值升高则被抑制,降低则被激活。另外NADPH对该酶有强烈抑制作用。,三、戊糖磷酸途径的生理意义在于生成NADPH和5-磷酸核糖,(一)戊糖磷酸途径为核酸生物合成提供核糖,(二)提供NADPH作为供氢参与多种代谢反应,1. NADPH是体内许多合成代谢的供氢体; 2. NADPH参与体内羟化反应; 3. NADPH还用于维持谷胱甘肽的还原

19、状态。,还原型谷胱甘肽是体内重要的抗氧化剂,可以保护一些含-SH基的蛋白质或酶免受氧化剂,尤其是过氧化物的损害。 在红细胞中还原型谷胱甘肽更具有重要作用,可以保护红细胞膜蛋白的完整性。,第 五 节 糖原的合成与分解 Glycogenesis and Glycogenolysis,是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。,糖 原 (glycogen),糖原储存的主要器官及其生理意义,1. 葡萄糖单元以-1,4-糖苷 键形成长链。 2. 约10个葡萄糖单元处形成分枝,分枝处葡萄糖以-1,6-糖苷键连接,分支增加,溶解度增加。 3. 每条链都终止于一个非还原端.非还原端增多,以利于其

20、被酶分解。,糖原的结构特点,目 录,一、糖原合成的代谢反应主要发生在肝和骨骼肌,糖原合成(glycogenesis) 指由葡萄糖合成糖原的过程,组织定位:主要在肝、骨骼肌 细胞定位:胞浆,1. 葡萄糖磷酸化生成葡萄糖-6-磷酸,葡萄糖,葡糖-6-磷酸,糖原合成途径:,2. 葡糖-6-磷酸转变成葡糖-1-磷酸,这步反应中磷酸基团转移的意义在于:由于延长形成-1,4-糖苷键,所以葡萄糖分子C1上的半缩醛羟基必须活化,才利于与原来的糖原分子末端葡萄糖的游离C4羟基缩合。,半缩醛羟基与磷酸基之间形成的O-P键具有较高的能量。,* UDPG可看作“活性葡萄糖”,在体内充作葡萄糖供体。,+,3. 葡糖-1

21、- 磷酸转变成尿苷二磷酸葡糖,1- 磷酸葡萄糖,尿苷二磷酸葡萄糖 ( uridine diphosphate glucose , UDPG ),4. -1,4-糖苷键式结合,* 糖原n 为原有的细胞内的较小糖原分子,称为糖原引物(primer), 作为UDPG 上葡萄糖基的接受体。,糖原分支的形成,目 录,分支的形成不仅可增加糖原的水溶性,更重要的是可增加非还原端数目,以便磷酸化酶能迅速分解糖原。 从葡萄糖合成糖原是耗能的过程。,近来人们在糖原分子的核心发现了一种名为蛋白-酪氨酸-葡糖基转移酶(glycogenin)的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C

22、1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖原合成时的引物。,糖原合成过程中作为引物的第一个糖原分子从何而来?,目 录,二、糖原分解不是糖原合成的逆反应,亚细胞定位:胞 浆,肝糖原的分解过程:,1. 糖原的磷酸解,糖原分解 (glycogenolysis )习惯上指肝糖原分解成为葡萄糖的过程。,2. 脱支酶的作用,转移葡萄糖残基 水解-1,6-糖苷键,转移酶活性,目 录,3. 葡糖-1-磷酸转变成葡糖-6-磷酸,4. 葡糖-6-磷酸水解生成葡萄糖,* 肌糖原的分解,肌糖原分解的前三步反应与肝糖原分解过程相同,但是生成葡糖-6-磷酸之后,由于肌肉组织中不存在葡

23、糖-6-磷酸酶,所以生成的葡糖-6-磷酸不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。 肌糖原的分解与合成与乳酸循环有关。, G-6-P的代谢去路,G(补充血糖),G-6-P,F-6-P (进入酵解途径),G-1-P,Gn(合成糖原),UDPG,6-磷酸葡萄糖内酯 (进入磷酸戊糖途径),葡萄糖醛酸 (进入葡萄糖醛酸途径),小 结, 反应部位:胞浆,(3) 糖原的合成与分解总图,目 录,三、糖原合成与分解受到彼此相反的调节,这两种关键酶的重要特点: 快速调节有共价修饰和 别构调节二种方式。 都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,(

24、一)糖原磷酸化酶是糖原分解的关键酶,磷蛋白磷酸酶-1,磷蛋白磷酸酶-1,依赖cAMP的蛋白激酶,依赖cAMP的蛋白激酶(cAMP-dependent protein kinase, 简称蛋白激酶A),其活性受cAMP调节。 这种通过一系列酶促反应将激素信号放大的连锁反应称为级联放大系统(cascade system),与酶含量调节相比(一般以几小时或天计),反应快,效率高。其意义有二:一是放大效应;二是级联中各级反应都存在有可以被调节的方式。,糖原磷酸化酶还受变构调节,葡萄糖是其变构调节剂。,磷酸化酶二种构象紧密型(T)和疏松型(R),其中T型的14位Ser暴露,便于接受前述的共价修饰调节。,

25、(二)糖原合酶是糖原合成的关键酶,磷蛋白磷酸酶-1,依赖cAMP的蛋白激酶,糖原合酶a有活性,磷酸化成糖原合酶b后即失去活性。,磷酸化酶b激酶,糖原合酶,糖原合酶-P,磷酸化酶b,磷酸化酶a-P,磷蛋白磷酸酶抑制剂,糖原合成与分解的生理性调节主要靠胰岛素和胰高血糖素。 胰岛素抑制糖原分解,促进糖原合成,但其机制还未肯定。 胰高血糖素可诱导生成cAMP,促进糖原分解。 肾上腺素也可通过cAMP促进糖原分解,但可能仅在应激状态发挥作用。,骨骼肌内糖原代谢的二个关键酶的调节与肝糖原不同:,在糖原分解代谢时肝主要受胰高血糖素的调节,而骨骼肌主要受肾上腺素调节。 肌肉内糖原合酶及磷酸化酶的变构效应物主要

26、为AMP、ATP及葡糖-6-磷酸。,Ca2+的升高可引起肌糖原分解增加。,调节小结, 双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。, 双重调节:别构调节和共价修饰调节。, 肝糖原和肌糖原代谢调节各有特点:如:分解肝糖原的激素主要为胰高血糖素, 分解肌糖原的激素主要为肾上腺素。, 关键酶调节上存在级联效应。, 关键酶都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,第 六 节糖 异 生 Gluconeogenesis,糖异生(gluconeogenesis)是指从非糖化合物转变为葡萄糖或糖原的过程,* 部位,* 原料,* 概念,主要

27、在肝、肾细胞的胞浆及线粒体,主要有乳酸、甘油、生糖氨基酸,一、糖异生途径不完全是糖酵解的逆行反应,* 过程,酵解途径中有3个由关键酶催化的不可逆反应。在糖异生时,须由另外的反应和酶代替。,糖异生途径与酵解途径大多数反应是共有的、可逆的。,糖异生途径(gluconeogenic pathway)指从丙酮酸生成葡萄糖的具体反应过程。,(一)丙酮酸经丙酮酸羧化支路转变成磷酸烯醇式丙酮酸,丙酮酸,草酰乙酸,PEP, 丙酮酸羧化酶(pyruvate carboxylase),辅酶为生物素(反应在线粒体), 磷酸烯醇式丙酮酸羧激酶(反应在线粒体、胞液),目 录,草酰乙酸转运出线粒体,丙酮酸,线粒体,胞液,

28、糖异生途径所需NADH+H+的来源,糖异生途径中,1,3-二磷酸甘油酸生成3-磷酸甘油醛时,需要NADH+H+。, 由氨基酸为原料进行糖异生时, NADH+H+则由线粒体内NADH+H+提供,它们来自于脂酸的-氧化或三羧酸循环,NADH+H+转运则通过草酰乙酸与苹果酸相互转变而转运。,(二)果糖-1,6-二磷酸转变为果糖-6-磷酸,(三)葡糖-6-磷酸水解为葡萄糖,非糖物质进入糖异生的途径, 糖异生的原料转变成糖代谢的中间产物, 上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原,目 录,在前面的三个反应过程中,作用物的互变分别由不同酶催化其单向反应,这种互变循环称之为底物循环(subs

29、trate cycle)。,因此,有必要通过调节使糖异生途径与酵解途径相互协调,主要是对前述底物循环中的后2个底物循环进行调节。,当两种酶活性相等时,则不能将代谢向前推进,结果仅是ATP分解释放出能量,因而称之为无效循环(futile cycle)。,(一)第一个底物循环在果糖-6-磷酸与果糖-1,6-二磷酸之间进行,二、糖异生的调节与糖酵解的调节彼此协调,(二)在磷酸烯醇式丙酮酸与丙酮酸之间进行第二个底物循环,三、糖异生的主要生理意义是维持血糖浓度的恒定,(一)维持血糖浓度恒定是糖异生最重要的生理作用,空腹或饥饿时依赖氨基酸、甘油等异生成葡萄糖,以维持血糖水平恒定。,正常成人的脑组织不能利用

30、脂酸,主要依赖氧化葡萄糖供给能量; 红细胞没有线粒体,完全通过乳酸酵解获得能量; 骨髓、神经等组织由于代谢活跃,经常进行乳酸酵解。,(二)糖异生是补充或恢复肝糖原储备的重要途径,三碳途径: 指进食后,大部分葡萄糖先在肝外细胞中分解为乳酸或丙酮酸等三碳化合物,再进入肝细胞异生为糖原的过程。,糖异生是肝补充或恢复糖原储备的重要途径,这在饥饿后进食更为重要。,发生这一变化的原因可能是饥饿造成的代谢性酸中毒所致。,(三)肾糖异生增强有利于维持酸碱平衡,体液pH降低,促进肾小管中磷酸烯醇式丙酮酸羧激酶的合成,从而使糖异生作用增强。 肾脏中-酮戊二酸因异生成糖而减少时,可促进谷氨酰胺脱氨生成谷氨酸以及谷氨

31、酸的脱氨反应,肾小管细胞将NH3分泌入管腔中,与原尿中H+结合,降低原尿H+的浓度,有利于排氢保钠作用的进行,对于防止酸中毒有重要作用。,四、肌肉收缩产生的可被其他组织利用而形成乳酸循环,肌肉收缩(尤其是氧供应不足时)通过乳酸酵解生成乳酸。肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又可被肌肉摄取,这就构成了一个循环,此循环称为乳酸循环,也叫做Cori循环。,乳酸循环的生理意义, 乳酸再利用,避免了乳酸的损失。, 防止乳酸的堆积引起酸中毒。,乳酸循环是一个耗能的过程,2分子乳酸异生为1分子葡萄糖需6分子ATP。,第 七 节 其他单糖的代谢概

32、况 Metabolism of other monosaccharides,一、果糖被磷酸化后进入糖酵解途径,果糖的代谢一部分在肝,一部分被周围组织主要为肌肉和脂肪组织摄取。,肌肉和脂肪组织,肝脏,果糖不耐受性(fructose intolerance)是一种遗传病,这种病因为缺乏B型醛缩酶,吃果糖也会造成果糖-1-磷酸堆积,大量消耗肝脏中磷酸的储备,进而使ATP浓度下降,从而加速乳酸酵解,造成乳酸酸中毒和餐后低血糖。这种病症常表现为自我限制,即果糖不耐受的人很快发展成强烈的对任何甜食的厌恶感。,二、半乳糖可转变为葡糖-1-磷酸成为糖酵解的中间代谢物,牛乳中的乳糖是半乳糖的主要来源,半乳糖在肝

33、内转变为葡萄糖。 尿嘧啶核苷二磷酸半乳糖(uridine diphosphate galactose, UDPGal)不仅是半乳糖转变为葡萄糖的中间产物, 也是半乳糖供体,可用以合成糖脂、蛋白聚糖和糖蛋白。 另一方面,由于差向异构酶反应可自由逆转,用于合成糖脂、蛋白聚糖和糖蛋白的半乳糖并不必依赖食物而可由UDPG转变生成。,半乳糖的代谢,三、甘露糖可转变为果糖-6-磷酸进入糖酵解途径,甘露糖在结构上是葡萄糖C2位的立体异构物,是多糖和糖蛋白的消化产物。,第 八 节 血糖及其调节 Blood Sugar and Its Regulation Blood,血糖,指血液中的葡萄糖。,血糖水平,即血糖

34、浓度。正常血糖浓度 :3.896.11mmol/L,血糖及血糖水平的概念,血糖,一、血糖的来源和去路相对平衡,血糖水平恒定的生理意义,保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。,脑组织不能利用脂酸,正常情况下主要依赖葡萄糖供能; 红细胞没有线粒体,完全通过糖酵解获能; 骨髓及神经组织代谢活跃,经常利用葡萄糖供能。,二、血糖水平的平衡主要受到激素调节,血糖水平保持恒定是糖、脂肪、氨基酸代谢协调的结果;也是肝、肌肉、脂肪组织等各器官组织代谢协调的结果.。 主要依靠激素的调节,酶水平的调节是最基本的调节方式和基础。,(一)胰腺分泌胰岛素和胰高糖素应对血糖的变化,胰岛素的分泌受血

35、糖控制,血糖升高立即引起胰岛素分泌;血糖降低,分泌即减少。,胰岛素的作用机制:,1胰岛素是降低血糖的唯一激素,血糖降低或血内氨基酸升高刺激胰高血糖素(glucagon)的分泌。,2胰高血糖素是升高血糖的主要激素,胰高血糖素的作用机制:,1肾上腺素是强有力的升高血糖的激素,肾上腺素的作用机制:,通过肝和肌肉的细胞膜受体、cAMP、蛋白激酶级联激活磷酸化酶,加速糖原分解。,肾上腺素主要在应激状态下发挥调节作用。,(二)机体升高血糖的激素还有肾上腺素和糖皮质激素,2糖皮质(激)素可升高血糖,糖皮质激素作用机制:,促进肌肉蛋白质分解,分解产生的氨基酸转移到肝进行糖异生。,抑制肝外组织摄取和利用葡萄糖,

36、抑制点为丙酮酸的氧化脱羧。,此外,在糖皮质激素存在时,其他促进脂肪动员的激素才能发挥最大的效果。这种协助促进脂肪动员的作用,可使得血中游离脂酸升高,也可间接抑制周围组织摄取葡萄糖。,第 九 节 糖代谢与疾病的关系 Abnormal Carbohydrate Metabolism in Diseases,一、先天性酶缺陷导致糖原累积症,糖原累积症(glycogen storage disease)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。 引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。,糖原积累症分型,二、血糖水平异常及糖尿病是最常见的糖代谢紊乱,人体对摄入的葡萄

37、糖具有很大耐受能力的这种现象,被称为葡萄糖耐量(glucose tolerence)或耐糖现象。 临床上因糖代谢障碍可发生血糖水平紊乱,常见有低血糖和高血糖两种类型。,糖耐量试验(glucose tolerance test, GTT),目的:临床上用来诊断病人有无糖代谢异常。,口服糖耐量试验的方法,被试者清晨空腹静脉采血测定血糖浓度,然后一次服用100g葡萄糖,服糖后的1/2、1、2h(必要时可在3h)各测血糖一次。以测定血糖的时间为横坐标(空腹时为0h),血糖浓度为纵坐标,绘制糖耐量曲线。,糖耐量曲线,正常人:服糖后1/21h达到高峰,然后逐渐降低, 一般2h左右恢复正常值。,糖尿病患者:

38、空腹血糖高于正常值,服糖后血糖浓度急剧升高,2h后仍可高于正常。,(一)低血糖是指血糖浓度低于3.33mmol/L,空腹血糖浓度低于3.333.89mmol/L时称为低血糖(hypoglycemia) 。 血糖水平过低,会影响脑细胞的功能,从而出现 头晕、倦怠无力、心悸等症状,严重时出现昏迷,称为低血糖休克。, 胰性(胰岛-细胞功能亢进、胰岛-细胞功能低下等) 肝性(肝癌、糖原积累病等) 内分泌异常(垂体功能低下、肾上腺皮质功能低下等) 肿瘤(胃癌等) 饥饿或不能进食,低血糖的病因有:,(二)高血糖是指空腹血糖高于7.22mmol/L,临床上将空腹血糖浓度高于7.227.78mmol/L称为高

39、血糖(hyperglycemia) 。 当血糖浓度高于8.8910.00mmol/L时,超过了肾小管的重吸收能力,则可出现糖尿。这一血糖水平称为肾糖阈。,持续性高血糖和糖尿,主要见于糖尿病(diabetes mellitus, DM)。,b. 血糖正常而出现糖尿,见于慢性肾炎、肾病综合征等引起肾对糖的吸收障碍。,c. 生理性高血糖和糖尿可因情绪激动而出现。,高血糖及糖尿的病理和生理原因:,(三)糖尿病是最常见的糖代谢紊乱疾病,糖尿病是一种因部分或完全胰岛素缺失、或细胞胰岛素受体减少、或受体敏感性降低导致的疾病,它是除了肥胖症之外人类最常见的内分泌紊乱性疾病。 糖尿病的特征即为高血糖和糖尿。,临床上将糖尿病分为二型:,型(胰岛素依赖型)型(非胰岛素依赖型),多发生于青少年,主要与遗传有关,定位于人类组织相容性复合体上的单个基因或基因群,是自身免疫病。,和肥胖关系密切,可能是由细胞膜上胰岛素受体丢失所致。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报