1、5.3简单的轴对称图形(2)教案教学目标(一)教学知识点1.等腰三角形是轴对称图形.2.等腰三角形的性质.3.等边三角形的轴对称性及性质.(二)能力训练要求1.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并掌握等腰三角形的轴对称性及其相关性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展其空间观念.教学重点等腰三角形的轴对称性及其有关性质.教学难点等腰三角形的“三线合一”的性质.教学方法探究归纳法教具准备教学过程.巧设现实情景,引入新课师上节课我们探讨了简单图形线段.角的轴对称性,知道线段和角是轴
2、对称图形.除线段和角外,我们还研究过三角形,那大家想一想:三角形是轴对称图形吗?生甲是.生乙不对,只有等腰三角形才是轴对称图形.生丙也不对,不但是等腰三角形是轴对称图形,而且等边三角形也是.生丁对,除等腰三角形、等边三角形外的任意三角形不是轴对称图形.师很好.等腰三角形和等边三角形是特殊的三角形.在小学已接触过,今天我们来系统地研究一下它们的性质.讲授新课师什么是等腰三角形、等边三角形呢?我们共同来回忆一下.师生共析三角形的三边,有的各不相等,有的有两边相等,有的三条边都相等.三边都不相等的三角形叫做不等边三角形(scalen ce triangle);有两条边相等的三角形叫做等腰三角形(is
3、osceles triangle),三条边都相等的三角形叫做等边三角形(equilateral triangle) 也叫正三角形.(如图 711)图 711在等腰三角形中,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.等边三角形是特殊的等腰三角形.即底边和腰相等的等腰三角形.师有了上述的概念后,同学们来想一想.(出示投影片7.2.2 A)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?生甲等腰三角形是轴对称图形.它的对称轴是顶角的平分线
4、所在的直线.因为等腰三角形的两条腰相等,所以把这两条腰重合对折三角形便可知道:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.师接下来大家来剪一个等腰三角形,然后进行折叠,找出它的对称轴.生乙我剪了一个等腰三角形,然后把这个三角形对折,使两条腰重合,这样顶角的平分线的两旁的部分就可以重合.所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.生丙我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明:底边上的中线所在的直线是等腰三角形的对称轴.生丁我折叠等腰三角形时发现:底边上的高所在的直线也是等腰三角形的对称轴.师你们说的是同一条直线吗?大家来动手折叠、观察.生齐
5、声它们是同一条直线.师很好.现在大家再来折一折.(出示投影片7.2.2 B)沿对称轴对折,你能发现等腰三角形的哪些特征?说说你的理由.生甲我沿等腰三角形的顶角平分线对折后,发现它两旁的部分互相重合,则说明等腰三角形的两个底角相等,顶角的角平分线与底边上的中线重合.生乙我也是沿等腰三角形的顶角的平分线对折,同样发现它两旁的部分互相重合.由此可知这个等腰三角形的两个底角相等,而且还可以知道:顶角的角平分线既是底边上的中线,也是底边上的高.图 712生丙也可以通过三角形全等来说明.即沿等腰三角形的顶角的平分线对折后,两旁的部分完全重合.则说明这两部分全等.如图 712: ABC 中, AB=AC,如
6、果 AD 是 BAC 的平分线,则 BAD= CAD.又因为 AD 是公共边 ,所 以 ABD 与 ACD 全 等 , 因 此 : BD=DC, B= C, BDA= CDA= BDC=90.21师很好,大家看屏幕:(电脑演示等腰三角形的折叠过程,显示“三线合一”,底角相等)由此我们得到了等腰三角形的性质(师生共同总结,然后出示投影片7.2.2 C)等腰三角形是轴对称图形.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.师我们讨论了等腰三角形的性质,那等边三角形有哪些性质呢?大家来画一个等边三角形,然后剪
7、下来,做一做(出示投影片7.2.2 D)(1)等边三角形是轴对称图形吗?找出它的对称轴.(2)你能发现它的哪些特征?(学生操作,教师指导)生甲我通过折叠知道:等边三角形是轴对称图形,它有三条对称轴,即:每个角的角平分线所在的直线是它的对称轴,或每条边上的高或中线所在的直线也是它的对称轴.生乙因为等边三角形是三边都相等的三角形,所以它是特殊的等腰三角形.因此,它的每个角的角平分线与这个角的对边上的中线、高是重合的,它们所在的直线都是等边三角形的对称轴.这样等边三角形有三条对称轴.生丙从折叠过程中可以发现:等边三角形的三个内角都相等.由三角形的内角和性质可以得到:这三个内角都等于 60.师很好.我
8、们来共同归纳一下等边三角形的性质.师生共析等边三角形是轴对称图形.等边三角形每个角的平分线和这个角的对边上的中线、高线重合(即“三线合一”),它们所在的直线都是等边三角形的对称轴.等边三角形共有三条对称轴.等边三角形的各角都相等,都等于 60师很好.下面我们通过练习来进一步熟悉掌握等腰三角形的性质和等边三角形的性质.课堂练习(一)课本 P195随堂练习1.图 713 是由大小不同的正三角形组成的图案,请找出它的对称轴.图 713答案: 有 3 条对称轴.2.墙上钉了一根木条,小明想检验这根木条是否水平.他拿来一个如图 714 所示的测平仪,在这个测平仪中, AB=AC, BC 边的中点 D 处
9、挂了一个重锤.小明将 BC 边与木条重合,观察此时重锤是否通过 A 点.如果重锤过 A 点,那么这根木条就是水平的.你能说明其中的道理吗?图 714答案:根据等腰三角形“三线合一”的性质,等腰三角形 ABC 底边 BC 上的中线 DA 应垂直于底边 BC(即木条).如果重锤过点 A,说明直线 AD 垂直于水平线,那么木条就是水平的.根据是平面内过直线外一点有且只有一条直线与已知直线垂直.3.如图 715,在下面的等腰三角形中, A 是顶角,分别求出它们的底角的度数.图 715解:(1)底角的度数是:(18060)2=60(2)底角的度数是:(18090)2=45(3)底角的度数是:(18012
10、0)2=30(二)看课本 P194195然后小结.课时小结这节课我们主要探讨了等腰三角形和等边三角形的轴对称性.由此我们得到了等腰三角形和等边三角形的性质.等腰三角形是轴对称图形.等腰三角形的顶角平分线,底边上的中线、高线互相重合,即三线合一.它们所在的直线是等腰三角形的对称轴.等腰三角形的两底角相等.等边三角形是特殊的等腰三角形,根据其特殊性,再由等腰三角形的性质及三角形的内角和性质,可以得出等边三角形的内角均为 60大家应灵活应用这些性质.课后作业(一)课本 P196习题 7.3 1、2、3、4.(二)1.预习内容:P 1971982.预习提纲轴对称的基本性质是什么?板书设计7.2.2 简单的轴对称图形(二)一、想一想二、等腰三角形的性质轴对称图形三线合一两底角相等三、做一做等边三角形的性质四、课堂练习五、课时小结六、课后作业