1、2018/4/6,高一、一科数学专用课件,嘉祥一中高一、一科数学组,向量加法、减法运算及其几何意义,2018/4/6,高一、一科数学专用课件,2018/4/6,高一、一科数学专用课件,知识回顾,1. 向量与数量有何区别?,2. 怎样来表示向量向量?,3. 什么叫相等向量向量?,数量只有大小没有方向,如:长度,质量,面积等,向量既有大小又有方向,如位移,速度,力等,1)用有向线段来表示,线段的长度表示线段的大小,箭头所指方向表示向量的方向。,2)用字母来表示,或用表示向量的有向线段的起点和终点字母表示.,长度相等,方向相同的向量相等.,(正因为如此,我们研究的向量是与起点无关的自由向量,即任何向
2、量可以在不改变它的大小和方向的前提下,移到任何位置.),上海,香港,台北,引入1:,向量加法的三角形法则:,C,A,B,首尾连首尾相接,尝试练习一:,A,B,C,D,E,(1)根据图示填空:,例1.如图,已知向量 ,求作向量 。,则,三角形法则,作法1:在平面内任取一点O,,作 , ,,例题讲解:,2018/4/6,高一、一科数学专用课件,思考1:如图,当在数轴上两个向量共线时,加法的三角形法 则是否还适用?如何作出两个向量的和?,(1),(2),B,C,B,C,2018/4/6,高一、一科数学专用课件,当向量 不共线时,和向量的长度 与向量 的长度和 之间的大小关系如何?,三角形的两边之和大
3、于第三边,综合以上探究我们可得结论:,2018/4/6,高一、一科数学专用课件,图1表示橡皮条在两个力F1和F2的作用下,沿MC方向伸长了EO;图2表示橡皮条在一个力F的作用下,沿相同方向伸长了相同长度EO。从力学的观点分析,力F与F1、F2之间的关系如何?,F=F1+F2,引入2:,起点相同,向量加法的平行四边形法则:,起点相同,向量加法的平行四边形法则:,文字表述为:以同一起点的两个向量为邻边作平行四边形,则以公共起点为起点的对角线所对应向量就是和向量。,例1.如图,已知向量 ,求作向量 。,例题讲解:,作法2:在平面内任取一点O,,作 , ,,以 为邻边作 OACB ,,连结OC,则,平
4、行四边形法则,尝试练习二:,(3)已知向量 ,用向量加法的三角形法则和平行四边形法则作出,2018/4/6,高一、一科数学专用课件,2018/4/6,高一、一科数学专用课件,例2.长江两岸之间没有大桥的地方,常常通过轮船进行运输,如图所示,一艘船从长江南岸A点出发,以 km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水速度的夹 角来表示)。,A,D,B,C,2018/4/6,高一、一科数学专用课件,例2.长江两岸之间没有大桥的地方,常常通过轮船进行运输,如图所示,一艘船从长江
5、南岸A点出发,以 km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水速度的夹 角来表示)。,答:船实际航行速度为4km/h,方向与水的流速间的夹角为60。,A,D,B,C,2018/4/6,高一、一科数学专用课件,(1)你还能回想起实数的相反数是怎样定义的吗?,(2)两个实数的减法运算可以看成加法运算吗?,思考:,如设,实数 的相反数记作 。,向量的减法运算及其几何意义,回顾:,2018/4/6,高一、一科数学专用课件,一、相反向量:,规定:,(1),(3)设 互为相反向量,
6、那么,2.2.2 向量的减法运算及其几何意义,记作:,的相反向量仍是 。,二、向量的减法:,(2),2018/4/6,高一、一科数学专用课件,设,D,E,又,所以,你能利用我们学过的向量的加法法则作出 吗?,不借助向量的加法法则你能直接作出 吗?,2018/4/6,高一、一科数学专用课件,三、几何意义:,可以表示为从向量 的终点指向向量 的终点的向量,(1)如果从 的终点指向 终点作向量,所得向量是什么呢?,(2)当 , 共线时,怎样作 呢?,A,B,O,A,B,O,一般地,B,A,O,(三角形法则),练习:,2018/4/6,高一、一科数学专用课件,三、几何意义,一般地,B,A,O,可以表示
7、为从向量 的终点指向向量 的终点的向量,练习:,2018/4/6,高一、一科数学专用课件,已知向量 ,求作向量 , 。,例3,O,B,A,C,D,作法:,在平面内任取一点O,,则,作,注意:,起点相同,连接终点,指向被减向量的终点。,2018/4/6,高一、一科数学专用课件,练习:,已知向量 ,求作向量 。,(1),(2),(3),(4),2018/4/6,高一、一科数学专用课件,例4,在 ABCD 中,,你能用 表示 吗?,D,B,A,C,变式二 本例中,当 满足什么条件时,,2018/4/6,高一、一科数学专用课件,巩固练习:,1、在 中, , ,则,2、如图,用 表示下列向量:,D,B,A,C,E,B,A,C,2018/4/6,高一、一科数学专用课件,小结,1.向量加法的三角形法则,(要点:两向量起点重合组成平行四边形两邻边),2.向量加法的平行四边形法则,(要点:两向量首尾连接),3.向量加法满足交换律及结合律,2018/4/6,高一、一科数学专用课件,向量的减法,一、定义(利用向量的加法定义)。,二、几何意义(起点相同,由减向量的终点 指向被减向量的终点)。,