1、第二十七章 相似,专题七 相似三角形的证明,类型三点定型法,1.如图,在RtABC中,AD为斜边BC上的高,ABC的平分线BE交AC于E,交AD于F.,证明: BAC=90,求证:,BAF+DAC=90,ADBC,DAC+C=90.,BAF=BCE,ABF=CBE,ABFCBE, .,类型三点定型法,2.如图,在 ABCD中,AM BC于M,ANCD于N, 求证:ACAM=MNAB.,证明:四边形ABCD是平行四边形,,B=D,AMBC,ANCD,,AMB=AND=90,,ABMADN, ,ABCD,BAN=AND=90,BAM+MAN=90,B+BAM=90,B=MAN,AMNBAC, ,即
2、ACAM=MNAB.,类型三点定型法,3.如图,点E为四边形ABCD的对角线BD上一点,且BAC=BDC=DAE. 求证:BEAD=CDAE.,证明:BAC=DAE,,EAB=DAC,又BDC=DAE.,BDC+ADE=DAE+ADE,,ADC=AEB,,AEBADC., ,即BEAD=CDAE.,类型等线段代换法,4.如图,在RtABC中有正方形DEFG,点E、F在斜边BC上,点D、G分别在边 AB、AC上. 求证:EF2=BECF.,证明:DEFG为正方形,,DEB=GFC=90,又B与C互余,FGC与C互余,,B=FGC,,RtBEDRtGFC,又DE=GF=EF,EF2=BECF.,
3、,即DEGF=BECF,,类型等线段代换法,5.如图,四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于F,ECA=D. 求证:ACBE=CEAD.,证明:四边形ABCD为平行四边形,,B=D,又ECA=D,,ECA=B,E=E,,EACECB,ACBE=CEAD., ,即ACBE=BCCE,又BC=AD,,类型等线段代换法,6.已知:如图,AD平分BAC,AD的垂直平分线EP交BC的延长线于点P. 求证:PD2=PBPC.,证明:连PA,EP是AD的垂直平分线,PA=PD,,PDA=DAP,PDA=DAC+PAC,,PDA=B+BAD,,B+BAD=DAC+PAC,,AD平分B
4、AC,BAD=DAC,,B=PAC,PACPBA,PD2=PBPC., ,即PA2=PBPC,,类型等积(等比)过渡法,7.如图,CE是RtABC斜边上的高,在EC的延长线上任取一点P,连AP,作BGAP于G,交CE于D. 求证:CE2=DEPE.,解:BGAP,PEAB,,AEP=BED=90,P=ABG,,即AEBE=PEDE.又CEAB,ACBC,,CE2=DEPE.,AEPDEB, ,AECCEB, ,即CE2=AEBE.,类型等积(等比)过渡法,8.如图,在ABC中,CAB=90,ADBC,AE=EC,ED交AB的延长线于F. 求证:ABAC=DFFA.,解:CAB=90,ADBC,
5、又AE=EC,DE=EC,CDE=C,,又CDE=BDF,BAD=C,BDF=BAD,,又F=F,FBDFDA,,BAD=C,BDAADC. , , .,类型等积(等比)过渡法,9.如图,在ABC中,AB=AC,DEBC,点F在边AC上,DF与BE相交于点G,且EDF=ABE. 求证:(1)DEFBDE;(2)DGDF=DBEF.,解:(1)AB=AC,ABC=ACB,DEBC,ABC+BDE=180,ACB+CED=180,CED=BDE,又EDF=ABE,DEFBDE;,DE2=DGDF,DGDF=DBEF.,DE2=DBEF.又由DEFBDE,得BED=DFE,(2)由DEFBDE得 ,,又GDE=EDF,GDEEDF, .,类型引平行线法,10.如图,在ABC中,D为AB的中点,DF交AC于E,交BC的延长线于F,求证:AECF=BFEC.,解:过C作CMAB交DF于M点,,又CMAD, ,,D为AB的中点. ,, ,即AECF=BFEC.,CMAB, ,,类型引平行线法,11.在ABC中,AD平分BAC,求证:BDDC=ABAC.,解:过D作DEAC交AB于E点,则有ADE=DAC,,又AD平分BAC,EAD=DAC=ADE,,AE=DE,DEAC,,BDDC=ABAC., ,由DEAC,, , ,,