收藏 分享(赏)

2017北师大版九年级数学下册课件:3圆 回顾和思考(第1课时).ppt

上传人:weiwoduzun 文档编号:4525991 上传时间:2019-01-01 格式:PPT 页数:18 大小:468KB
下载 相关 举报
2017北师大版九年级数学下册课件:3圆 回顾和思考(第1课时).ppt_第1页
第1页 / 共18页
2017北师大版九年级数学下册课件:3圆 回顾和思考(第1课时).ppt_第2页
第2页 / 共18页
2017北师大版九年级数学下册课件:3圆 回顾和思考(第1课时).ppt_第3页
第3页 / 共18页
2017北师大版九年级数学下册课件:3圆 回顾和思考(第1课时).ppt_第4页
第4页 / 共18页
2017北师大版九年级数学下册课件:3圆 回顾和思考(第1课时).ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、第三章 圆,回顾与思考(第1课时),一、知识结构,圆,基本概念与性质,与圆有关的位置关系,与圆有关的计算,定义,对称性,点与圆的位置关系,弧长,确定圆的条件,圆周角与圆心角的关系,垂径定理,圆心角、弧、弦的关系,直线与圆的位置关系,圆的内接四边形,扇形面积,切线长定理,内接正多边形,圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又是 对称图形, 是它的对称中心.,二、知识点回顾,圆的对称性,轴,对称轴,中心,圆心,O,垂径定理,垂直于弦的直径平分 ,并且平分 ; 平分弦(不是直径)的 垂直于弦,并且平分 .,O,A,B,D,E,这条弦,弦所对的两条弧,直径,弦所对的两条弧, CD是直径,

2、AE=BE,CDAB,C,证明线段或弧相等的重要定理,在同圆或等圆中,如果两个 ,两条 ,两条 ,中有一组量 ,那么它们所对应的其余各组量都分别 .,圆心角、弧、弦的关系,O,A,B,A,B,在同圆或等圆中,相等的圆心角所对的 相等,所对的 相等。,弧,弦,圆心角,弧,弦,相等,相等,同弧或等弧所对的圆周角 ,都等于它所对弧的圆心角 .,圆周角定理,A,C,B,O,A,C1,O,C2,C3,B,相等,度数的一半,直径所对的圆周角是 ,90所对的弦是 .,直角,直径,点与圆的位置关系 d r, d r d r.2. 直线与圆的位置关系 d r, d r d r.,与圆有关的位置关系,点P在圆外,

3、点P在圆上,点P在圆内,=,直线和O相交,直线和O相切,直线和O相离,=,圆的切线的性质,圆的切线 过切点的半径;,经过 的外端,并且 这条 的直线是圆的切线.,l是O的切线, 切点为A,OA是O的直径, OAl,圆的切线的判定,垂直于,l,半径,垂直于,半径,OA是O的半径, lOA于A, l是O的切线.,切线长定理,从圆外一点所画的圆的两条切线的长相等。,PA、PB分别切O于A、B,,PA=PB,圆的内接多边形,圆的内接四边形对角互补,圆的内接正多边形,弧长与扇形面积的计算,O,n,1,n的圆心角所对的弧长计算公式为 .,n的圆心角所在的扇形面积为 。,三、精选精练,1如图,O是ABC的外

4、接圆,已知ACO=30,B=_,要点通过辅助线的添加,建立同弧所对的圆周角及圆心角或直径所对的圆周角,实现所求对象的转换。,60 ,D,法一:连接OA,法二:延长CO交O于D,连接DA,2. 如图2,在O中,弦AB=1.8cm,圆周角ACB=30,则O的直径等于_cm.,D,3.6,要点当所求对象非显性存在时,可先将其作出,并寻找与之相关的已知条件,连接AO,并延长交O于D,连接BD,,D=C=30 ,,AD是直径,B=90 ,,3、已知:如图,AB是O的弦,半径OC、OD分别交AB于点E、F, 且AE=BF,请你找出线段OE与OF的数量关系,并给予证明。,要点图形呈轴对称性时,可利用垂径定理

5、求解,也可利用半径和弦组成的等腰三角形的对称性求解,4、某宾馆大堂要铺设圆环形地毯,如图,工人王师傅只测量了与小圆相切的大圆的弦AB的长就计算出了圆环的面积,王师傅是怎样算的?请你用圆的相关知识加以解释。,要点遇到相切问题经常需要作出过切点的半径,垂径定理往往需要建立的直角三角形,并利用勾股定理求解三边。,C,连接圆心O与切点C,连接AO ,,OCAB,在AOC中,AO2-OC2=AC2,S圆环面积=(AO2-OC2)=AC2,60 ,要点过圆外一点可作两条与圆相切的直线,该点与两切点的距离相等,且OO平分AOB,5、如图,过圆外一点O作O的两条切线OA、OB,A、B是切点,且OO圆O半径长两倍,则AOB=_,6、如图,RtABC内接于O,A=30,延长斜边AB到D,使BD等于O半径,求证:DC是O切线。,要点求证圆的切线问题除了需要作出过切点的半径,还要注意观察图形的特征,例如包涵的特殊三角形的性质。,证明:连OC,如图, A=30,OA=OC, COB=60, COB为等边三角形,BC=BO, 而BD等于O半径, BC=BO=BD, OCD为直角三角形,即OCD=90, 所以DC是O切线,四、课堂小结,1.本章知识结构和重点内容; 2.观察猜想关联; 3.转化的数学思想在解决圆的问题时的相关应用。,五、课后作业,完成课本复习题知识技能1-14题.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报