收藏 分享(赏)

高中数学知识点第七章-直线和圆的方程.doc

上传人:eco 文档编号:4516802 上传时间:2018-12-31 格式:DOC 页数:8 大小:166.50KB
下载 相关 举报
高中数学知识点第七章-直线和圆的方程.doc_第1页
第1页 / 共8页
高中数学知识点第七章-直线和圆的方程.doc_第2页
第2页 / 共8页
高中数学知识点第七章-直线和圆的方程.doc_第3页
第3页 / 共8页
高中数学知识点第七章-直线和圆的方程.doc_第4页
第4页 / 共8页
高中数学知识点第七章-直线和圆的方程.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、高中数学第七章- 直线和圆的方程直线和圆的方程考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式直线方程的一般式两条直线平行与垂直的条件两条直线的交角点到直线的距离用二元一次不等式表示平面区域简单的线性规划问题曲线与方程的概念由已知条件列出曲线方程圆的标准方程和一般方程圆的参数方程考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系(3)了解二元一次不等式表示平面区域(4)了解线性规划的意义

2、,并会简单的应用(5)了解解析几何的基本思想,了解坐标法(6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程07. 直线和圆的方程直线和圆的方程 知识要点知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与 x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与 x轴平行或重合时,其倾斜角为 0,故直线倾斜角的范围是)0(180.注:当 9或 12x时,直线 l垂直于 x轴,它的斜率不存在.每一条直线都存在惟一的倾斜角,除与 x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距

3、式、两点式、斜切式.特别地,当直线经过两点 ),0(ba,即直线在 x轴, y轴上的截距分别为)0,(,ba时,直线方程是: 1yx.注:若 23xy是一直线的方程,则这条直线的方程是 23xy,但若)0(则不是这条线.附:直线系:对于直线的斜截式方程 bkxy,当 k,均为确定的数值时,它表示一条确定的直线,如果 bk,变化时,对应的直线也会变化.当 为定植, k变化时,它们表示过定点(0, )的直线束.当 k为定值, b变化时,它们表示一组平行直线.3. 两条直线平行:1l 21k两条直线平行的条件是: 1l和 2是两条不重合的直线 . 在 1l和 2的斜率都存在的前提下得到的. 因此,应

4、特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线 21,l,它们在 y轴上的纵截距是 21,b,则 1l 21k,且 21b或 1,l的斜率均不存在,即 21AB是平行的必要不充分条件,且 C)推论:如果两条直线 21,l的倾斜角为 ,则 l 21. 两条直线垂直:两条直线垂直的条件:设两条直线 1l和 2的斜率分别为 1k和 2,则有121kl这里的前提是 2,l的斜率都存在. 0l,且 2l的斜率不存在或02,且 l的斜率不存在. (即 011BA是垂直的充要条件)4. 直线的交角:直线 1l到 2的角(方向角) ;直线 1l到 2的角,是指直线 1l

5、绕交点依逆时针方向旋转到与 2l重合时所转动的角 ,它的范围是 ),0(,当 90时 21tank.两条相交直线 1l与 2的夹角:两条相交直线 1l与 2的夹角,是指由 l与 相交所成的四个角中最小的正角 ,又称为 1l和 2所成的角,它的取值范围是 2,0,当 90,则有21tank.5. 过两直线 0:2211CyBxAl的交点的直线系方程(0)(2211 CyBxACyBxA为参数, 不包括在内)6. 点到直线的距离:点到直线的距离公式:设点 ),(0yxP,直线 PCByAxl,0:到 l的距离为 d,则有20BACyxd.注:1. 两点 P1(x1,y1)、P 2(x2,y2)的距

6、离公式: 212121)()(| yxP.特例:点 P(x,y)到原点 O 的距离: |y2. 定比分点坐标分式。若点 P(x,y)分有向线段 1212P所 成 的 比 为 即 ,其中 P1(x1,y1),P2(x2,y2).则 ,112yx特例,中点坐标公式;重要结论,三角形重心坐标公式。3. 直线的倾斜角(0 180) 、斜率: tank4. 过两点 1221),(),( xyyxP的 直 线 的 斜 率 公 式 : . 12()x当 2121,x(即直线和 x 轴垂直)时,直线的倾斜角 90,没有斜率 新 疆学 案王 新 敞两条平行线间的距离公式:设两条平行直线 )(0:,0: 2122

7、11 CByAxlCByAxl ,它们之间的距离为 d,则有 21BAC.注;直线系方程1. 与直线:A x+By+C= 0 平行的直线系方程是:A x+By+m=0.( mR, Cm).2. 与直线:A x+By+C= 0 垂直的直线系方程是:B x-Ay+m=0.( mR)3. 过定点( x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B 不全为 0)4. 过直线 l1、 l2 交点的直线系方程:(A 1x+B1y+C1)+( A2x+B2y+C2)=0 (R) 注:该直线系不含 l2.7. 关于点对称和关于某直线对称:关于点对称的两条直线一定是平行直线,且这个点到

8、两直线的距离相等.关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程) ,过两对称点的直线方程与对称直线方程垂直(方程)可解得所求对称点.注:曲线、直线关于一直线( bxy)对称的解法: y 换 x, x 换 y. 例:曲线 f(x ,y)=0 关于直线 y=x2 对称曲线方程是 f(y+2 ,x 2)=0. 曲线 C: f(x ,y)=0 关于点(a ,b)的对称曲线方程是 f(a x, 2b y)=0.

9、 二、圆的方程.1. 曲线与方程:在直角坐标系中,如果某曲线 C上的 与一个二元方程 0),(yxf的实数建立了如下关系:曲线上的点的坐标都是这个方程的解.以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).曲线和方程的关系,实质上是曲线上任一点 ),(yxM其坐标与方程 0),(yxf的一种关系,曲线上任一点 ),(yx是方程 0),(yxf的解;反过来,满足方程 ,f的解所对应的点是曲线上的点.注:如果曲线 C 的方程是 f(x ,y)=0,那么点 P0(x0 ,y)线 C 上的充要条件是 f(x0 ,y0)=0 2. 圆的标准方程:以点 ),

10、(ba为圆心, r为半径的圆的标准方程是 22)()(rbyax.特例:圆心在坐标原点,半径为 的圆的方程是: 2ryx.注:特殊圆的方程:与 x轴相切的圆方程 2)()(ba ),(,ba或圆 心与 y轴相切的圆方程 22)()(bya ),(,bar或圆 心与 x轴 轴都相切的圆方程 2ax ,圆 心3. 圆的一般方程: 02FEyD .当 042FED时,方程表示一个圆,其中圆心 2,EDC,半径 24FEDr.当 2时,方程表示一个点 2,.当 04FE时,方程无图形(称虚圆) .注:圆的参数方程: sincorbyax( 为参数).方程 022FEDCBAx表示圆的充要条件是: 0B

11、且 0CA且04FED.圆的直径或方程:已知 0)()(),(),( 212121 yxyxBA (用向量可征).4. 点和圆的位置关系:给定点 ),(0yxM及圆 22)()(:rbyaxC. M在圆 C内 220)(rbax 在圆 上 0)(y( 在圆 外 220)(rbax5. 直线和圆的位置关系:设圆圆 C: )0()()(22rbyax; 直线 l: )0(2BACyAx;圆心 ),(b到直线 l的距离 2BACbad. rd时, l与 C相切;附:若两圆相切,则 02211FyExDyx相减为公切线方程. rd时, l与 C相交;附:公共弦方程:设有两个交点,则其公共弦方程为 0)

12、()()( 212121 FyExD. rd时, l与 C相离. 附:若两圆相离,则 02211FyExDyx相减为圆心 21O的连线的中与线方程.由代数特征判断:方程组 )()(CBArba用代入法,得关于 x(或 y)的一元二次方程,其判别式为 ,则:l0与 C相切;l与 相交;l0与 相离.0:222111FyExy注:若两圆为同心圆则 0112FyExDy, 022FyExDy相减,不表示直线.6. 圆的切线方程:圆 2ryx的斜率为 k的切线方程是 rkxy21过圆02FEyDx上一点 ),(P的切线方程为: 0200 FyExDyx .一般方程若点( x0 ,y0)在圆上,则( x

13、 a)(x0 a)+(y b)(y0 b)=R2. 特别地,过圆2ryx上一点 ,的切线方程为 2r.若点( x0 ,y0)不在圆上,圆心为(a,b)则 1)(2001Rxakyb,联立求出 k切线方程.7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD 四类共圆. 已知 O的方程 02FEyDx 又以 ABCD 为圆为方程为)()(kbxyaxAA 4222R,所以 BC 的方程即代,相切即为所求.三、曲线和方程1.曲线与方程:在直角坐标系中,如果曲线 C 和方程 f(x,y)=0 的实数解建立了如下的关系:1) 曲线 C 上的点的坐标都是方程 f(x,y)=0 的解(纯粹性) ;2) 方程 f(x,y)=0 的解为坐标的点都在曲线 C 上(完备性) 。则称方程 f(x,y)=0 为曲线 C的方程,曲线 C 叫做方程 f(x,y)=0 的曲线。2.求曲线方程的方法:.1)直接法:建系设点,列式表标,简化检验; 2)参数法 ; 3)定义法, 4)待定ABCD(a,b)系数法.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报