1、第34卷 第6期 西南师范大学学报(自然科学版) 2009年12月Vol.34 No.6 Journal of Southwest ChinaNormal University (Natural Science Edition) Dec. 2009cI|:1000-5471(2009)06-0034-06 T “ Y娄彦敏1 , 刘娟红1 , 周晓平1 , 刘锦超1,21. +v0s0 ,610065;2. +; ?/ 7?K ,610065K1:s0 ZE(MD) / = ?、T、 “ #_sf .TV, “ 6, = ?9F,T“ hl, “ 9v, OT“ “ Arrhenius.V_s
2、f s V, 6,F s0 ,M 4, P = ?9F,V7M T“ “ .1 o M:s0 ; = ?;T“ ; “ ;_sf ms |:O645.16DS M :AT“ B1 “ , q.DOI :10.13718/ki.xsxb.2009.06.009Uij(rij)=A i BjqAqBrAB+4 rOO12- rOO6(1)T: -sMT,s Lennard-JonesT;Uij(rij)s0T ?,A,BsYV UA,B0i,jS;qAA0 , qBB0 ;rAB0W , rOO s00WT ;,0Lennard-JonesT ;rOHO-Hoo, HOHH -O-Ho. 8 nV
3、1.V1 SPCE ? rOH/nm HOH/ K -1B /K /nm qO/e qH/e0.100 00 109.47 78.20 0.316 56 -0.847 6 0.423 8:e=1.60210-19C E ?, ? H)? 3 ,|Hamiltonian o. %5,M ?f 14 , T /USij(rij)= Uij(rij)-Uij(rC) rij rC0 rij rC(2):USij(rij) M ?, rC ? .2 E% E s09 256, E“85“8(NVT), EsY273,283,293,313,333,353,373 K, ,V “ 6, s0F , v/
4、,h .m4(b) _sf , B=0.17,0.32 nm)C,sY _oT _oTOH . “ 6, _oTB/,B! 6,0 LT24M,V 6, s0W _oTh .7 _M,y V ? 6,s0F ,s0W 9v, P _sf M.m4(c) _ _sf ,Vm A 9F,! 6, CB=sY s0K # s0、= s0W _ _ . E/ +、# V3.图4 不同温度下水的径向分布函数V3 / _sf +# T/K gOO(rmax) rmax/nm gOH(rmax1) rmax1/nm gOH(rmax2) rmax2/nm NOH273 3.167 0.27 1.633 0.
5、17 1.567 0.32 1.988283 3.067 0.27 1.566 0.17 1.547 0.32 1.986293 2.967 0.27 1.501 0.17 1.528 0.32 1.983313 2.799 0.27 1.384 0.17 1.493 0.32 1.978333 2.659 0.27 1.293 0.17 1.467 0.32 1.974353 2.530 0.27 1.205 0.17 1.438 0.32 1.970373 2.431 0.27 1.133 0.17 1.418 0.32 1.967 9 Q 84 . l /nij(r)=4r0r2 gij
6、(r)dr (8)37第6期 娄彦敏, 等:温度对水的粘度和扩散系数影响的研究V3 _ _sf V0srmin1.VV3 A 9F Bhl,9V 6, s0W _oTh .4 1) “ 6, = ?9F,T“ hl, H ET“ L, HvBt,y V ? s L T Y. H, Lz,7 OT“ M t LB.2) 1 “ 679v,y 6,F s0 , Ps0 S9v,MT h , ,yN1 “ 9v. “ T“ (Arrhenius,Q 8 .3) “ 6,_sf B,! 6,= v, “ 6|h ,V 6, s0F , v/. “ 6, _oT _B/,B! 6,0 LTM,V 6,
7、s0W _oTh , _ 9hl.4) 6,M s0W _o ,V7M s04, Ps0 = ? 3 M,V7Y s0T . ID: 1 Jorgensen W L, Jenson C.Temperature Dependence of TIP3P, SPC, and TIP4P Water from NPT Monte Carlo Simula-tions:Seeking Temperatures of Maximum Density J .J Comput Chem, 1998, 19:1179-1186. 2 Lee H S, Tuckerman M E.Structure of Liq
8、uid Water at Ambient Temperature from ab Initio M olecular Dynamics Per-formed in the Complete Basis Set Limit J .J Chem Phys, 2006, 125:1-14. 3 r, dl, ,./ s0 E J .9 , 1999, 16:241-244. 4 ,i.NPT“8s0 E “ J . 2, 2007, 34:4-5. 5 Y,; ,. “ s0 E J . , 2006, 27:373-375. 6 B , ,.HNO(HNS)s0(HF)1n3 M _o J . 2
9、v(1 S), 2009, 31(1):49-54. 7 Smith P E, Van Gunstern W F.The Viscosity of SPC and SPC/E Water at 277 and 300K J .Chem Phys Lett, 1993,215:315-318. 8 Sun Y L, Sun M H, Cheng W H, et al.The Examination of Water Potentials by Simulating Viscosity J .Comput Ma-ter Sci, 2007, 38:737-740. 9 ,o, x.ljAu-Agv
10、 E J . + =Sv(1 S), 2006,3:308-311. 10 Lie G C, Clementi E.Molecular Dynamics Simulation of Liquid Water with an ab Initio FlexibleWater-water InteractionPotential J .Phys Rev A, 1986, 33:2679-2693. 11 Berendson H J C, Postma J P M , Gunsteren W F, et al.Intermolecular Forces M .Holland:D.Reidel Publ
11、ishingCompany, 1981:331. 12 Berendsen H J C, Grigena J R, Straatsma T P.TheMissing Term in Effective Pair Potentials J .J Phys Chem, 1987,91:6269-6271. 13 Mahoney M W, Jorgensen W L.A five-fiveModel for Liquid Waterand the Reproduction of theDensity Anomaly by Rig-id, Nonpolarizable Potential Functi
12、ons J .J Chem Phys, 2000, 112:8910-8922. 14 Allen M P, Tildesley D J.Computer Simulation of liquids M .Oxford:Clareendon Press, 1987. 15 Nose S.A Molecular Dynamics Method for Simulations in the Canonical Ensemble J .M ol Phys, 1984, 52:255-268.38 西南师范大学学报(自然科学版) 投稿网址 http:/ 第34卷 16 H, , r.s0 E Ll M
13、 .:, 2007:77. 17 De Leeuw S W, Perram J W, Smith E R.Simulation of ElectrostaticSystems in PeriodicBoundary Conditions.I.LatticeSums and Dielectric Constant J .Proc R Soc Lond A, 1980, 373:27-56. 18 Gear C W.Numerical Integration of Ordinary Differential EquationsM .New Jersey:Prentice-Hill, 1971. 1
14、9 Eyring H.Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates J .J Chem Phys, 1936, 4:283-291. 20 Kincaid J F, Eyring H, Stearm A E.The Theory of Absolute Reaction Rates and its Application to Viscosity and Diffu-sion in the Liquid State J .Chem Rev, 1941, 28:301-365. 21,o.A
15、u-Agv sr EJ . 2 =Sv(1 S), 2006, 31(4):66-68. 22 W.A8BT# “ ? . W1“ J ., 1993, 7:1-7. 23 Ortega J, Lewis J P, Sankey O F.First Principles Simulations of Fluid Water:The Radial Distribution Functions J .JChem Phys, 1997, 106:3696-3702. 24 Bruni F, Ricci M A, Soper A K.Unpredicted Density Dependenceof H
16、ydrogen Bonding in Water Found by Neutron Dif-fraction J .Phys Rev B, 1996, 54:11876-11879.TemperatureontheViscosityandDiffusionCoefficientofWaterLOU Yan-min1 , LIU Juan-hong1 , ZHOU Xiao-ping1 , LIU Jin-chao1,21.Instituteof Atomicand Molecular Physics, SichuanUniversity, Chengdu 610065, China;2.Sic
17、huan PhotonEnergyTechnologyDevelopment Co, Ltd, Chengdu 610065 , ChinaAbstract:Molecular dynamics(MD)simulations are performed to simulate the internal energy , viscosity,diffusion coefficients and radial distribution functions of water at different temperatures.The results showthat with increasing
18、temperature, when the internal energy of water is increased that the viscosity coeffi-cients are decreased and diffusion coefficients are increased.The viscosity coefficient and diffusion coeffi-cient are accord with the Arrhenius behavior.From the radial distributions analysis, it is known that the
19、motion of water molecules and collisions is aggravated by the temperature increasing, which changes themicrostructure of water.So it makes internalenergy increase and changes the viscosity coefficients and dif-fusion coefficients.Keywords:molecular dynamics;internal energy;viscosity coefficient;diffusion coefficient;radial distri-bution function3 I 潘春燕 39第6期 娄彦敏, 等:温度对水的粘度和扩散系数影响的研究