1、现在讨论过定点(x0;y0)的动直线交圆锥曲线ax2 + by2 = 1于点A、B,点P是一定点,直线AP的斜率为k1,直线BP的斜率为k2,k1 + k2是定值的问题。下面来求点P的坐标。设动直线的方程是y = k(x x0) + y0,代入ax2 + by2 = 1整理,得(a + bk2)2 x2 + 2bk(y0 kx0)x + b(y0 kx0)2 1 = 0,所以xA + xB = 2bk(y0 kx0)a + bk2,xAxB = b(y0 kx0)2 1a + bk2,而k1 + k2= yP yAxP xA+ yP yBxP xB= yP k(xA x0) + y0xP xA
2、+ yP k(xB x0) + y0xP xB= k(xA + xB)(xP + x0) 2(xAxB + x0xP) + (xA + xB 2xP)(yP y0)x2P (xA + xB)xP + xAxB= 2(b(xP x0)y0k2 + (ax0xP + by0yP 1)k + axP (yP y0)b(xP x0)2 k2 + 2b(xP x0)y0k + ax2P + by20 1,要使k1 + k2是定值,必须b(xP x0)y0b(xP x0)2 =ax0xP + by0yP 12b(xP x0)y0 =axP (yP y0)ax2P + by20 1,由b(xP x0)y0b
3、(xP x0)2 =ax0xP + by0yP 12b(xP x0)y0整理得ax0xP by0yP 1 = 0,由b(xP x0)y0b(xP x0)2 =axP (yP y0)ax2P + by20 1整理得ay0x2P + ax0xPyP ax0y0xP +(by20 1)yP = 0,由此得方程组8:xP = ax0 y0ab(ax20 + by20 1)a(ax20 + by20),yP = by0 x0ab(ax20 + by20 1)b(ax20 + by20),并计算得k1 + k2 = 2aab(ax20 + by20 1),且点P在圆锥曲线ax2 + by2 = 1上。类似
4、的计算方法可得过定点(x0;y0)的直线交抛物线y2 = 2px于点A、B,点P坐标是y20 px0 y0y20 2px0p ;y0 y20 2px0,直线AP的斜率是k1,直线BP的斜率是k2,则k1 + k2 = 2py20 2px0,且点P在抛物线y2 = 2px上。过定点(x0;y0)的动直线交圆锥曲线ax2 + by2 = 1于点A、B,点P是一定点,直线AP的斜率为k1,直线BP的斜率是k2。若点P的坐标是ax20 by20 + 12ax0 ;ax20 + by20 + 12by0,则k1k2 = a2x20b2y20;若点P的坐标是 x0ax20 + by20; y0ax20 + by20,则k1k2 = ab ax20 + by20 1ax20 + by20 1,且点P在圆锥曲线ax2 + by2 = 1上。过定点(x0;y0)的动直线交抛物线y2 = 2px于点A、B,点P是一定点,直线AP的斜率为k1,直线BP的斜率是k2。若点P的坐标是y202p; y0,则k1k2 = 4p2y20 2px0;2且点P在圆锥曲线ax2 + by2 = 1上;若点P的坐标是y202p;y20 + 2px02y0,则k1k2 = p2y20。3