1、2.1.2椭圆的简单几何性质(2),高二数学 选修2-1 第二章 圆锥曲线与方程,|x| a,|y| b,关于x轴、y轴成轴对称;关于原点成中心对称,(a,0)、(-a,0)、(0,b)、(0,-b),(c,0)、(-c,0),长半轴长为a,短半轴长为b. ab,a2=b2+c2,|x| b,|y| a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0 , c)、(0, -c),同前,同前,同前,复习,课前练习,求适合下列条件的椭圆的标准方程: 1.经过点P(-3,0) 、Q(0,-2); 2.长轴的长等于20,离心率等于,例5 如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆
2、绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上,由椭圆一个焦点F1出发的光线,经过旋转椭圆面反射后集中到另一个焦点F2.,解:建立如图所示的直角坐标系, 设所求椭圆方程为,A,所以,点M的轨迹是长轴、短轴长分别为10、6的椭圆。,思考上面探究问题,并回答下列问题:,探究:,(1)用坐标法如何求出其轨迹方程,并说出轨迹,(2)给椭圆下一个新的定义,探究、点M(x,y)与定点F (c,0)的距离和它到定直线l:x=a2/c 的距离的比是常数c/a(ac0),求点M 的轨迹。,y,F,F,l,I,x,o,P=M| ,
3、由此得,将上式两边平方,并化简,得,设 a2-c2=b2,就可化成,这是椭圆的标准方程,所以点M的轨迹是长轴、短轴分别为2a,2b 的椭圆,M,解:设 d是M到直线l 的距离,根据题意,所求轨迹就是集合,回忆:直线与圆的位置关系,1.位置关系:相交、相切、相离 2.判别方法(代数法)联立直线与圆的方程消元得到二元一次方程组(1)0直线与圆相交有两个公共点;(2)=0 直线与圆相切有且只有一个公共点;(3)0 直线与圆相离无公共点,通法,直线与椭圆的位置关系,种类:,相离(没有交点),相切(一个交点),相交(二个交点),相离(没有交点) 相切(一个交点) 相交(二个交点),直线与椭圆的位置关系的
4、判定,代数方法,1.位置关系:相交、相切、相离 2.判别方法(代数法)联立直线与椭圆的方程消元得到二元一次方程组(1)0直线与椭圆相交有两个公共点;(2)=0 直线与椭圆相切有且只有一个公共点;(3)0 直线与椭圆相离无公共点,通法,知识点1.直线与椭圆的位置关系,例1:直线y=kx+1与椭圆 恒有公共点, 求m的取值范围。,题型一:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?,练习2.无论k为何值,直线y=kx+2和曲线 交点情况满足( ) A.没有公共点 B.一个公共点 C.两个公共
5、点 D.有公共点,D,题型一:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,思考:最大的距离是多少?,题型一:直线与椭圆的位置关系,练习3已知直线y=x- 与椭圆x2+4y2=2 ,判断它们的位置关系。,解:联立方程组,消去y,0,因为,所以,方程()有两个根,,那么,相交所得的弦的弦长是多少?,则原方程组有两组解.,- (1),由韦达定理,设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k,弦长公式:,知识点2:弦长公式,可推广到任意二次曲线,例3:已知斜率为1的直线L过椭圆 的右焦点,交椭圆于A,B两点,求弦AB之长,题型
6、二:弦长公式,题型二:弦长公式,例5、如图,已知椭圆 与直线x+y-1=0交 于A、B两点, AB的中点M与椭圆中心连线的 斜率是 ,试求a、b的值。,例6 :已知椭圆 过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.,解:,韦达定理斜率,韦达定理法:利用韦达定理及中点坐标公式来构造,题型三:中点弦问题,例 6 已知椭圆 过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.,点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率,点,作差,题型三:中点弦问题,直线和椭圆相交有关弦的中点问题,常用设而不求的 思想方法,例6已知椭圆 过点P(2,1)引一弦,使
7、弦在这点被平分,求此弦所在直线的方程.,所以 x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0 从而A ,B在直线x+2y-4=0上 而过A,B两点的直线有且只有一条,解后反思:中点弦问题求解关键在于充分利用“中点”这一 条件,灵活运用中点坐标公式及韦达定理,,题型三:中点弦问题,3、弦中点问题的两种处理方法: (1)联立方程组,消去一个未知数,利用韦达定理; (2)设两端点坐标,代入曲线方程相减可求出弦的斜率。,1、直线与椭圆的三种位置关系及判断方法;,2、弦长的计算方法: 弦长公式:|AB|= = (适用于任何曲线),小 结,解方程组消去其中一元得一元二次型方程, 0 相离,= 0 相切, 0 相交,