1、2.3 不等式的证明方法之三:反证法 教案 (新人教选修 4-5)教学目标:通过实例,体会反证法的含义、过程与方法,了解反证法的基本步骤,会用反证法证明简单的命题。教学重点:体会反证法证明命题的思路方法,会用反证法证明简单的命题。教学难点:会用反证法证明简单的命题。教学过程:一、引入:前面所讲的几种方法,属于不等式的直接证法。也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法
2、是间接证明的一种基本方法。反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。具体地说,反证法不直接证明命题“若 p 则 q”,而是先肯定命题的条件 p,并否定命题的结论 q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。二、典型例题:例 1、已知 ,求证: ( 且 )0banbaN1n例 1、设 ,求证23.2
3、证明:假设 ,则有 ,从而.2)1(68126,833bba教学札记因为 ,所以 ,这与题设条件 矛盾,所以,2)1(6b23ba23ba原不等式 成立。a例 2、设二次函数 ,求证: 中至少有一个不小于qpxf2)( )(,)1(ff.1证明:假设 都小于 ,则)3(,2)1(ff 2(1).另一方面,由绝对值不等式的性质,有(2))39()24()1(2132qpqpqpfffff(1) 、 (2)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的
4、矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例 3、设 0 , (1 b)c , (1 c)a ,4441则三式相乘:ab 0,ab + bc + ca 0,abc 0,求证:a, b, c 0 证:设 a 0, bc 0, 则 b + c = a 0ab + bc + ca = a(b + c) + bc 0 矛盾, 必有 a 0同理可证:b 0, c 0三、课堂练习:1、利用反证法证明:若已知 a,b,m 都是正数,并且 ,则 ba.bam2、设 0 0,且 x + y 2,则 和 中至少有一个小于 2。xy1提示:反设 2, 2 x, y 0,可得 x + y 2 与 x + y 2 矛盾。1四、课时小结:利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。五、课后作业:课本 29 页第 1、4 题。六、教学后记: