收藏 分享(赏)

【课件】九年级上册数学第22章22.2相似三角形的判定第三课时沪科版-(共15张PPT).ppt

上传人:weiwoduzun 文档编号:3748247 上传时间:2018-11-17 格式:PPT 页数:15 大小:10.08MB
下载 相关 举报
【课件】九年级上册数学第22章22.2相似三角形的判定第三课时沪科版-(共15张PPT).ppt_第1页
第1页 / 共15页
【课件】九年级上册数学第22章22.2相似三角形的判定第三课时沪科版-(共15张PPT).ppt_第2页
第2页 / 共15页
【课件】九年级上册数学第22章22.2相似三角形的判定第三课时沪科版-(共15张PPT).ppt_第3页
第3页 / 共15页
【课件】九年级上册数学第22章22.2相似三角形的判定第三课时沪科版-(共15张PPT).ppt_第4页
第4页 / 共15页
【课件】九年级上册数学第22章22.2相似三角形的判定第三课时沪科版-(共15张PPT).ppt_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、类似于判定三角形全等的SAS方法,我们能不 能通过两边和夹角来判断两个三角形相似呢?,问 题,A,B,C,D,F,E,4,2,利用刻度尺和量角器画ABC和ABC,使AA, 和 都等于给定的值k,量出它们的第三组对应边BC和BC的长,它们的比等于k吗?另外两组对应角B与B,C与C是否相等?,改变A或K值的大小,再试一试,是否有同样的结论?,实际上,我们有利用两边和夹角判定两个三角形相似的方法:,等于k,B =B,C =C,改变k的值具有相同的结论,AA,ABC ABC,如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,已知:如图, ABC和 ABC中,A =A,AB:

2、ABAC:AC.,求证:ABC ABC,证明:在ABC 的边AB、AC(或它们的延长线)上分别截取ADAB,AEAC,连接DE,因为A =A,这样ABC ADE, DE/BC, ADE ABC, ABC ABC,A,B,C,A,B,C,D,E,对于ABC和ABC,如果 BB,这 两个三角形一定相似吗?试着画画看,不 一 定 相 似,在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与邻座交流一下,看看是否有同样的结论,如图在ABC和ABC中, 求证: ABCABC,这两个三角形是相似的.,证明:在线

3、段AB(或它的延长线)上截取ADAB,过点D作DEBC,交AC于点E,根据前面的结论可得ADEABC,同理 DEBC,ADEABC,ABCABC,A,B,C,D,E,由此我们得到利用三边判定三角形相似的方法:,如果一个三角形的三条边与另一个三角形 的三条边对应成比例,那么这两个三角形相似,ABC ABC,根据下列条件,判断ABC与ABC是否相似,并说明理由: (1)A120,AB7cm,AC14cm,A120,AB3cm,AC6cm; (2)AB4cm,BC6cm,AC8cm,A B12cm,BC18cm,AC21cm.,解:(1),又 AA, ABCABC,(2),ABC与ABC的三组对应边

4、的比不等,它们不相似,两三角形的相似比是多少?,要使两三角形相似,不改变AC的长,AC的长应当改为多少?,例 题,1.根据下列条件,判断ABC与ABC是否相似,并说明理由:(1)A=40,AB=8,AC=15A =40,AB =16,AC =30(2)AB=10cm,BC=8cm,AC=16cmAB =16cm,BC =12.8cm,AC =25.6cm,解: (1),A=A,ABCABC,练 习,ABCABC,(2),2. 图中的两个三角形是否相似?,ACB=ECD,ACBECD,对应边的比不相等,图中两个三角形不相似,解:(1),(2),3.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几个答案?,方案(1),设另外两条边长分别为x , y,方案(2),方案(3),第79页练习第1,3题,xx中学 x年级x班,xxx,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报