收藏 分享(赏)

22.1.3二次函数的图像与性质.ppt

上传人:weiwoduzun 文档编号:3527382 上传时间:2018-11-12 格式:PPT 页数:82 大小:4.72MB
下载 相关 举报
22.1.3二次函数的图像与性质.ppt_第1页
第1页 / 共82页
22.1.3二次函数的图像与性质.ppt_第2页
第2页 / 共82页
22.1.3二次函数的图像与性质.ppt_第3页
第3页 / 共82页
22.1.3二次函数的图像与性质.ppt_第4页
第4页 / 共82页
22.1.3二次函数的图像与性质.ppt_第5页
第5页 / 共82页
点击查看更多>>
资源描述

1、,第二十二章 二次函数,22.1.3二次函数y=ax+k的图像和性质,向上,向下,(0 ,0),(0 ,0),y轴,y轴,当x0时, y随着x的增大而减小。,当x0时, y随着x的增大而增大。,x=0时,y最小=0,x=0时,y最大=0,抛物线y=ax2 (a0)的形状是由|a|来确定的,一般说来, |a|越大,复习回顾,当x0时, y随着x的增大而增大。,当x0时, y随着x的增大而减小。,抛物线的开口就越小.,|a|越小,抛物线的开口就越大.,二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?它们有什么关系?我们应该采取什么方法来研究这个问题?,画出函数y

2、2x2和函数y 2x2+1的图象,并加以比较,例2. 在同一直角坐标系中,画出二次函数y=2x2和y=2x2 +1的图像.,(0,1),问题1:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?,(1)二次函数 y=2x1 的图象与二次函数 y=2x 的图象有什么关系?,(0,1),2、函数y2x21的图象可以看成是将函数y2x2的图象向上平移一个单位得到的。,1、函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y 2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。,函数y2x21

3、和y2x2的图象有什么联系?,你能由函数y2x2的性质,得到函数y2x21的一些性质吗?完成填空:当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_以上就是函数y2x21的性质。,0,0,=0,小,小,1,(2)二次函数 y=3x1 的图象与二次函数 y=3x 的图象有什么关系?,(0,-1),a0,(3)在同一直角坐标系中画出函数的图像,y,在同一直角坐标系中画出函数的图像,a0,(0,2),(0,-2),当a0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而

4、 , 当x= 时,取得最 值,这个值等于 ;当a0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 ,当x= 时,取得最 值,这个值等于 。,y=-x2-2,y=-x2+3,y=-x2,y=x2-2,y=x2+1,y=x2,向上,y轴,(0,k),减小,增大,0,小,k,向下,y轴,(0,k),增大,减小,0,大,k,观 察 思 考,试说出函数yax2k(a、k是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,k),(0,k),|a|越大开口越小,反之开口越大。,练习 1.把抛

5、物线 向下平移2个单位,可以得到抛物线 ,再向上平移5个单位,可以得到抛物线 ; 2.对于函数y= x2+1,当x 时,函数值y随x的增大而增大;当x 时,函数值y随x的增大而减小;当x 时,函数取得最 值,为 。,0,0,=0,大,1,3.函数y=3x2+5与y=3x2的图象的不同之处是( ) A.对称轴 B.开口方向 C.顶点 D.形状4.已知抛物线y=2x21上有两点(x1,y1 ) ,(x2,y2 )且x1x20,则y1 y2(填“”或“”),C,二次函数y=ax2+k的性质,开口向上,开口向下,a的绝对值越大,开口越小,关于y轴对称,顶点是最低点,顶点是最高点,在对称轴左侧递减 在对

6、称轴右侧递增,在对称轴左侧递增 在对称轴右侧递减,k0,k0,k0,k0,(0,k),探究,解:列表,画出二次函数 、 的图像,并考虑它们的开口方向、对称轴和顶点.,-2,0,-0.5,-2,-0.5,-8,-4.5,-8,-2,-0.5,0,-4.5,-2,-0.5,x=1,讨论,抛物线 与 的开口方向、对称轴、顶点?,抛物线 与 抛物线 有什么关系?,讨论,向左平移1个单位,归纳,向右平移1个单位,练习,在同一坐标系中作出下列二次函数:,观察三条抛物线的相互关系,并分别指出它们的开口方向,对称轴及顶点.,顶点(0,0),顶点(2,0),直线x=2,直线x=2,向右平移2个单位,向左平移2个

7、单位,顶点(2,0),对称轴:y轴 即直线: x=0,练习,在同一坐标系中作出下列二次函数:,观察三条抛物线的相互关系,并分别指出它们的开口方向,对称轴及顶点.,向右平移2个单位,向右平移2个单位,向左平移2个单位,向左平移2个单位,一般地,抛物线y=a(xh)2有如下特点:,(1)对称轴是x=h;,(2)顶点是(h,0).,(3)抛物线y=a(xh)2可以由抛物线y=ax2向左或向右平移|h|得到.,h0,向右平移;h0,向左平移,归纳,二次函数y=a(x-)2的性质,开口向上,开口向下,a的绝对值越大,开口越小,直线,顶点是最低点,顶点是最高点,在对称轴左侧递减 在对称轴右侧递增,在对称轴

8、左侧递增 在对称轴右侧递减,h0,h0,h0,h0,(,0),练习,y=-2(x+3)2,1、说出抛物线的开口方向、对称轴、顶点,最大值或最小值各是什么及增减性如何?,y=2(x-3)2,y=-2(x-2)2,y=3(x+1)2,2、若将抛物线y=-2(x-2)2的图象的顶点移到原点,则下列平移方法正确的是( ) A、向上平移2个单位 B、向下平移2个单位 C、向左平移2个单位 D、向右平移2个单位,C,3、抛物线y=4(x-3)2的开口方向 ,对称轴是 ,顶点坐标是 ,抛物线是最 点, 当x= 时,y有最 值,其值为 。 抛物线与x轴交点坐标 ,与y轴交点坐标 。,向上,直线x=3,(3,0

9、),低,3,小,0,(3,0),(0,36),向上,直线x=-3,( -3 , 0 ),直线x=1,直线x=3,向下,向下,( 1 , 0 ),( 3, 0),知识巩固,小结,3.抛物线y=ax2+k有如下特点:,当a0时, 开口向上;,当a0时,开口向上.,(2)对称轴是y轴;,(3)顶点是(0,k).,抛物线y=a(xh)2有如下特点:,(1)当a0时, 开口向上,当a0时,开口向上;,(2)对称轴是x=h;,(3)顶点是(h,0).,2.抛物线y=ax2+k可以由抛物线y=ax2向上或向下平移|k|得到.,抛物线y=a(xh)2可以由抛物线y=ax2向左或向右平移|h|得到.,(k0,向

10、上平移;k0向下平移.),(h0,向右平移;h0向左平移.),1.抛物线y=ax2+k、抛物线y=a(xh)2和抛物线y=ax2的形状完全相同,开口方向一致;,(1)当a0时, 开口向上,当a0时,开口向下;,如何平移:,二次函数的图像和性质,y=ax2的函数图像 y=ax2 +k 的函数图像 y=a(x-h)2的函数图像 y=a(x-h)2 +k 的函数图像 y=ax2+bx+c 的函数图像,在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象观察图象,回答问题,(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,(2

11、)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少?,在同一坐标系中,作出二次函数y=3x, y=3(x-1)2和y=3(x-1)2+2的图象.,根据图象回答问题:三个图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?,对称轴仍是平行于y轴 的直线x=1;增减性与 y=3x2类似.,顶点是(1,2).,二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.,开口向上,当 X=1时有最小 值:且最小值=2.,先猜一猜,再做一做,在同一坐

12、标系中作二次函数y=3(x-1)2-2,会是什么样?,X=1,对称轴仍是平行于y轴的直线 (x=1);增减性与y=3x2类似.,顶点是(1,-2),二次函数y=3(x-1)2-2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 下平移2个单位后得到的.,二次函数y=3(x-1)2-2的图象与抛物线y=3x2和y=3(x-1)2有何关系?它的开口方向、对称轴和顶点坐标分别是什么?,开口向上, 当x=1时y有 最小值:且 最小值= -2.,二次函数y=-3(x-1)2+2和y=-3(x-1)2, y=-3x的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什

13、么?再作图看一看,X=1,在同一坐标系中,作出二次函数y=-3(x-1)2+2, y=-3(x-1)2-2, y=-3x和 y=-3(x-1)2的图象。,根据图像 回答问题,对称轴仍是平行于y轴的直线 (x=1);增减性与y=-3x2类似.,顶点分别是 (1,2)和(1,-2).,二次函数 y=-3(x-1)2+2与y=-3(x-1)2+2的 图象可以看作是抛物线y=-3x2先沿 着x轴向右平移1个单位,再沿直线 x=1向上(或向下)平移2个单位后 得到的.,二次函数y=-3(x-1)2+2与y=-3(x-1)2-2的图象和抛物线y=-3x,y=-3(x-1)2有什么关系? 它的开口方向,对称

14、轴和顶点坐标分别是什么?,开口向下,当x=1 时y有最大值;且 最大值=2(或 最大值=-2).,想一想,二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象和抛物线y=-3x,y=-3(x+1)2,y,X=1,对称轴仍是平行于y轴的直线 (x=-1);增减性与y= -3x2类似.,顶点分别是 (-1,2)和(-1,-2),二次函数y=-3(x+1)2+2与 y=-3(x+1)2-2的图象可 以看作是抛物线y=-3x2 先沿着x轴向左平移1个 单位,再沿直线x=-1向上 (或向下)平移2个单位后 得到的.,二次函数y=-3(x+1)2+2与y=-3(x+1)2-2的图象和抛物线y=

15、-3x,y=-3(x+1)2有什么关系? 它的开口方向,对称轴和顶点坐标分别是什么?,开口向下, 当x=-1时y有 最大值:且 最大值= 2 (或最大值= - 2).,先想一想,再总结二次函数y=a(x-h)2+k的图象和性质.,x=1,一般地,由y=ax的图象便可得到二次函数y=a(x-h)+k的图象:y=a(x-h)+k(a0) 的图象可以看成y=ax的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时,向上平移;当k0时,向下平移)得到的. 因此,二次函数y=a(x-h)+k的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k的值有关.,归纳,用平移观点看函

16、数:,抛物线 与抛物线 形状相同,位置不同.,二次函数 特点:,归纳,1.图象是一条抛物线,对称轴为直线x=h,顶点为(h,k)。,2.当a0时,开口向上;当x=h时,y取最小值为k;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大.,3.当a0时,开口向下;当x=h时,y取最大值为k;在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.,二次函数y=a(x-h)2+k的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=a(x-h)2+k(a0),y=a(x-h)2+k(a0)

17、,(h,k),(h,k),直线x=h,直线x=h,由h和k的符号确定,由h和k的符号确定,向上,向下,当x=h时,最小值为k.,当x=h时,最大值为k.,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,根据图形填表:,1.指出下列函数图象的开口方向对称轴和顶点坐标及最值:,对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢?,2.(1)二次函数y=3(x+1)2的图象与二次函数y=3

18、x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,(2)二次函数 y=-3(x-2)2+4 的图象与二次函数 y=-3x2的图象有什么关系?,2.不同点: 只是位置不同(1)顶点不同:分别是(h,k)和(0,0).(2)对称轴不同:分别是直线x= h和y轴.(3)最值不同:分别是k和0. 3.联系: y=a(x-h)+k(a0) 的图象可以看成y=ax的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时向上平移;当k0时,向下平移)得到的.,1.相同点: (1)形状相同(图像都是抛物线,开口方向相同). (2)都是轴对称图形. (3)都有最(大或小)

19、值. (4)a0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大而增大. a0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的增大而减小 .,二次函数y=a(x-h)+k与y=ax的关系,1.指出下列函数图象的开口方向,对称轴和顶点坐标.必要时作出草图进行验证.,2.填写下表:,二次函数的图像和性质,y=ax2的函数图像 y=ax2 +k 的函数图像 y=a(x-h)2的函数图像 y=a(x-h)2 +k 的函数图像 y=ax2+bx+c 的函数图像,一般地,抛物线y=a(x-h) +k与y=ax 的 相同, 不同,2,2,知识回顾

20、:,形状,位置,y=ax,2,y=a(x-h) +k,2,上加下减,左加右减,知识回顾:,抛物线y=a(x-h)2+k有如下特点:,1.当a0时,开口 ,当a0时,开口 ,,向上,向下,2.对称轴是 ;,3.顶点坐标是 。,直线X=h,(h,k),直线x=3,直线x=1,直线x=2,直线x=3,向上,向上,向下,向下,(3,5),(1,2),(3,7 ),(2,6),你能说出二次函数y=x 6x21图像的特征吗?,2,1,2,探究:,如何画出 的图象呢?,我们知道,像y=a(x-h)2+k这样的函数,容易确定相应抛物线的顶点为(h,k), 二次函数 也能化成这样的形式吗?,配方,y= (x6)

21、 +3,2,1,2,你知道是怎样配方的吗?,(1)“提”:提出二次项系数;,( 2 )“配”:括号内配成完全平方;,(3)“化”:化成顶点式。,归纳,二次函数 y= x 6x +21图象的 画法:,(1)“化” :化成顶点式 ;,(2)“定”:确定开口方向、对称轴、顶 点坐标;,(3)“画”:列表、描点、连线。,2,1,2,求次函数y=ax+bx+c的对称轴和顶点坐标,函数y=ax+bx+c的顶点是,配方:,提取二次项系数,配方:加上再减去一次项系数绝对值一半的平方,整理:前三项化为平方形式,后两项合并同类项,化简:去掉中括号,这个结果通常称为求顶点坐标公式.,函数y=ax+bx+c的对称轴、

22、顶点坐标是什么?,1. 说出下列函数的开口方向、对称轴、顶点坐标:,函数y=ax+bx+c的对称轴、顶点坐标是什么?,对于y=ax2+bx+c我们可以确定它的开口方向,求出它的对称轴、顶点坐标、与y轴的交点坐标、与x轴的交点坐标(有交点时),这样就可以画出它的大致图象。,方法归纳,y=2x2-5x+3,y=(x-3)(x+2),y= x2+4x-9,求下列二次函数图像的开口、顶点、对称轴,请画出草图:,小试牛刀,3,9,6,抛物线位置与系数a,b,c的关系:,a决定抛物线的开口方向:a0 开口向上,a0 开口向下, a,b决定抛物线对称轴的位置:(对称轴是直线x = ), a,b同号 对称轴在

23、y轴左侧; b=0 对称轴是y轴; a,b异号 对称轴在y轴右侧,2a,b,【左同右异】, c决定抛物线与y轴交点的位置: c0 图象与y轴交点在x轴上方; c=0 图象过原点; c0 图象与y轴交点在x轴下方。,顶点坐标是( , )。,(5)二次函数有最大或最小值由a决定。,当x= 时,y有最大(最小)值 y=,b,2a,_,4a,4acb,2,-1,例2、已知函数y = ax2 +bx +c的图象如下图所示,x= 为该图象的对称轴,根据图象信息你能得到关于系数a,b,c的一些什么结论?,y,1,.,.,x,1.抛物线y=2x2+8x-11的顶点在 ( )A.第一象限 B.第二象限C.第三象

24、限 D.第四象限2.不论k 取任何实数,抛物线y=a(x+k)2+k(a0)的顶点都在 ( )A.直线y = x上 B.直线y = - x上C.x轴上 D.y轴上3.若二次函数y=ax2 + 4x+a-1的最小值是2,则a的值是 ( ) A 4 B. -1 C. 3 D.4或-1,C,B,A,4.若二次函数 y=ax2 + b x + c 的图象如下,与x轴的一个交点为(1,0),则下列各式中不成立的是 ( )A.b2-4ac0 B. 0,5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则( ) A.b=2 c= 6 B.b=-6 ,

25、c=6C.b=-8 c= 6 D.b=-8 , c=18,B,B,6.若一次函数 y=ax+b 的图象经过第二、三、四象限,则二次函数 y=ax2+bx-3 的大致图象是 ( ),7.在同一直角坐标系中,二次函数 y=ax2+bx+c 与一次函数y=ax+c的大致图象可能是 ( ),C,C,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0),由a,b和c的符号确定,由a,b和c的符号确定,向上,向下,在对称轴的左侧,y随着x的增

26、大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,根据图形填表:,(五)、学习回顾:,填写表格:,1.相同点: (1)形状相同(图像都是抛物线,开口方向相同). (2)都是轴对称图形. (3)都有最(大或小)值. (4)a0时, 开口向上, 在对称轴左侧,y都随x的增大而减小, 在对称轴右侧,y都随 x的增大而增大. a0时,开口向下, 在对称轴左侧,y都随x的增大而增大, 在对称轴右侧,y都随 x的增大而减小 .,驶向胜利的彼岸,回味无穷,二次函数y=ax2+bx+c(a0)与=ax的关系,2.不同点: (

27、1)位置不同(2)顶点不同:分别是 和(0,0).(3)对称轴不同:分别是 和y轴.(4)最值不同:分别是 和0. 3.联系: y=a(x-h)+k(a0) 的图象可以看成y=ax的图象先沿x轴整体左(右)平移| |个单位(当 0时,向右平移;当 0时向上平移;当 0时,向下平移)得到的.,驶向胜利的彼岸,回味无穷,二次函数y=ax2+bx+c(a0)与=ax的关系,22.1 二次函数的图像和性质,1、已知抛物线y=ax2+bx+c,0,问题1,经过点(-1,0),则_,经过点(0,-3),则_,经过点(4,5),则_,对称轴为直线x=1,则_,当x=1时,y=0,则a+b+c=_,a-b+c

28、=0,c=-3,16a+4b+c=5,顶点坐标是(-3,4), 则h=_,k=_,,-3,a(x+3)2+4,4,问题2,2、已知抛物线y=a(x-h)2+k,对称轴为直线x=1,则_,代入得y=_,代入得y=_,h=1,a(x-1)2+k,-x1,- x2,求出下表中抛物线与x轴的交点坐标,看看你有什么发现?,(1,0)(3,0),(2,0)(-1,0),(-4,0)(-6,0),(x1,0),( x2,0),y=a(x_)(x_) (a0),交点式,问题3,-x1,- x2,求出下表中抛物线与x轴的交点坐标,看看你有什么发现?,(1,0)(3,0),(2,0)(-1,0),(-4,0)(-

29、6,0),(x1,0),( x2,0),y=a(x_)(x_) (a0),交点式,问题3,y=a(x-1)(x-3)(a0),y=a(x-2)(x+1)(a0),y=a(x+4)(x+6)(a0),已知三个点坐标三对对应值,选择一般式,已知顶点坐标或对称轴或最值,选择顶点式,已知抛物线与x轴的两交点坐标,选择交点式,二次函数常用的几种解析式,一般式 y=ax2+bx+c (a0),顶点式 y=a(x-h)2+k (a0),交点式 y=a(x-x1)(x-x2) (a0),用待定系数法确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式。,解:,设所求的二次函数为,解得,已知一个

30、二次函数的图象过点(0,-3) (4,5) (1, 0)三点,求这个函数的解析式?,例题,二次函数的图象过点(0,-3)(4,5)(1, 0),c=-3,a-b+c=0,16a+4b+c=5,a= b= c=,y=ax2+bx+c,16a+4b=8 a-b=3,4a+b=2 a-b=3,-3,解:,设所求的二次函数为,解得,所求二次函数为,y=x2-2x-3,已知一个二次函数的图象过点(0,-3) (4,5) (1, 0)三点,求这个函数的解析式?,例题,二次函数的图象过点(0,-3)(4,5)(1, 0),c=-3,a-b+c=0,16a+4b+c=5,a= b= c=,1,-2,-3,x=

31、0时,y=-3; x=4时,y=5;x=-1时,y=0;,y=ax2+bx+c,解:,设所求的二次函数为 y=a(x-3)(x+1),已知一个二次函数的图象过点(0, -3) (-1,0) (3,0) 三点,求这个函数的解析式?,变式1,所求二次函数为 y=(x-3)(x+1),即 y=x2-2x-3,依题意得 -3=a(0-3)(0+1)解得 a=1,解:,设所求的二次函数为,已知抛物线的顶点为(1,4), 且过点(0,3),求抛物线的解析式?,点( 0,-3)在抛物线上,a-4=-3,所求的抛物线解析式为 y=(x-1)2-4,变式2, a=1,最低点为(1,-4),x=1,y最值=-4,

32、y=a(x-1)2-4,解:,设所求的二次函数为,已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式?,变式3,y=a(x-1)2+k,思考:怎样设二次函数关系式,如图,直角ABC的两条直角边OA、OB的长分别是1和3,将AOB绕O点按逆时针方向旋转90,至DOC的位置,求过C、B、A三点的二次函数解析式。,应用迁移,应用迁移,(1,0),(0,3),(-3,0),达标检测,(1)过点(2,4),且当x=1时,y有最值为6;,(2)如图所示,,根据条件求出下列二次函数解析式:,x,y,1,2,O,1,数学是来源于生活又服务于生活的.,小燕去参观一个蔬菜大棚,大棚的横截面为抛物线,有关数据如图所示。小燕身高米,在她不弯腰的情况下,横向活动范围是多少?,M,N,A,B,A,B,C,A,B,O,O,O,A,B,C,N,M,已知三个点坐标三对对应值,选择一般式,已知顶点坐标或对称轴或最值,选择顶点式,已知抛物线与x轴的两交点坐标,选择交点式,二次函数常用的几种解析式,一般式 y=ax2+bx+c (a0),顶点式 y=a(x-h)2+k (a0),交点式 y=a(x-x1)(x-x2) (a0),用待定系数法确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报