收藏 分享(赏)

模型的诊断与检验.ppt

上传人:dreamzhangning 文档编号:3318816 上传时间:2018-10-12 格式:PPT 页数:36 大小:302.50KB
下载 相关 举报
模型的诊断与检验.ppt_第1页
第1页 / 共36页
模型的诊断与检验.ppt_第2页
第2页 / 共36页
模型的诊断与检验.ppt_第3页
第3页 / 共36页
模型的诊断与检验.ppt_第4页
第4页 / 共36页
模型的诊断与检验.ppt_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、第11章 模型的诊断与检验,11.1 模型总显著性的F检验(已讲过) 11.2 模型单个回归参数显著性的t检验(已讲过) 11.3 检验若干线性约束条件是否成立的F检验 11.4 似然比(LR)检验 11.5 沃尔德(Wald)检验 11.6 拉格朗日乘子(LM)检验 11.7 邹(Chow)突变点检验(不讲) 11.8 JB(Jarque-Bera)正态分布检验(不讲) 11.9 格兰杰(Granger)因果性检验(不讲),(第3版252页),在建立模型过程中,要对模型参数以及模型的各种假定条件作检验。这些检验要通过运用统计量来完成。在第2章和第3章已经介绍过检验单个回归参数显著性的t统计量

2、和检验模型参数总显著性的F统计量。在第5章介绍了模型误差项是否存在异方差的Durbin-Watson检验、White检验;在第6章介绍了模型误差项是否存在自相关的DW检验和BG检验。 本章开始先简要总结模型参数总显著性的F检验、单个回归参数显著性的t检验。然后再介绍几个在建模过程中也很常用的其他检验方法。他们是检验模型若干线性约束条件是否成立的F检验和似然比(LR)检验、Wald检验、LM检验、JB检验以及Granger非因果性检验。,第11章 模型的诊断与检验,11.1 模型总显著性的F 检验,以多元线性回归模型,yt = 0+1xt1+2xt2+k xt k+ ut为例, 原假设与备择假设

3、分别是H0:1= 2 = = k = 0; H1:j不全为零 在原假设成立条件下,统计量其中SSR指回归平方和;SSE指残差平方和;k+1表示模型中 被估参数个数;T 表示样本容量。判别规则是, 若 F F (k,T-k-1),接受H0; 若 F F (k,T-k-1) , 拒绝H0。 (详见第3章),(第3版252页),11.2 模型单个回归参数显著性的t 检验,(第3版253页),11.3 检验若干线性约束条件是否成立的F 检验,(第3版254页),例11.1:建立中国国债发行额模型。 首先分析中国国债发行额序列的特征。1980年国债发行额是43.01亿元,占GDP当年总量的1%,2001

4、年国债发行额是4604亿元,占GDP当年总量的4.8%。以当年价格计算,21年间(1980-2001)增长了106倍。平均年增长率是24.9%。中国当前正处在社会主义市场经济体制逐步完善,宏观经济运行平稳阶段。国债发行总量应该与经济总规模,财政赤字的多少,每年的还本付息能力有关系。,11.3 检验若干线性约束条件是否成立的F 检验,(第3版254页),例11.1:建立中国国债发行额模型,选择3个解释变量,国内生产总值,财政赤字额,年还本付息额,根据散点图建立中国国债发行额模型如下: DEBTt = 0 +1 GDPt +2 DEFt +3 REPAYt + ut 其中DEBTt表示国债发行总额

5、(单位:亿元),GDPt表示年国内生产总值(单位:百亿元),DEFt表示年财政赤字额(单位:亿元),REPAYt表示年还本付息额(单位:亿元)。,(第3版255页),用19802001年数据得输出结果如下;DEBTt = 4.31 +0.35 GDPt +1.00 DEFt +0.88 REPAYt (0.2) (2.2) (31.5) (17.8) R2 = 0.999, DW=2.12, T =22, SSEu= 48460.78, (1980-2001) 是否可以从模型中删掉DEFt和REPAYt呢?可以用F统计量完成上述检验。原假设H0是3 = 4 = 0(约束DEFt和REPAYt的

6、系数为零)。给出约束模型估计结果如下,DEBTt = -388.40 +4.49 GDPt (-3.1) (17.2) R2 = 0.94, DW=0.25, T =22, SSEr= 2942679, (1980-2001) 已知约束条件个数m = 2,T- k-1 = 18。SSEu= 48460.78,SSEr= 2942679。 因为F=537.5 F( 2, 18) =3.55,所以拒绝原假设。不能从模型中删除解释变量DEFt和REPAYt。,(第3版256页),例11.1:建立中国国债发行额模型,EViews可以有三种途径完成上述F检验。 (1)在输出结果窗口中点击View,选Co

7、efficient Tests, Wald Coefficient Restrictions功能(Wald参数约束检验),在随后弹出的对话框中填入c(3) = c(4) = 0。可得如下结果。其中F = 537.5。,例11.1:建立中国国债发行额模型,(第3版256页),(2)在非约束模型输出结果窗口中点击View,选Coefficient Tests, Redundant Variables -Likelihood Ratio功能(模型中是否存在多余的不重要解释变量),在随后弹出的对话框中填入GDP,DEF。可得计算结果F = 537.5。(3)在约束模型输出结果窗口中点击View,选Co

8、efficient Tests, Omitted Variables -Likelihood Ratio功能(模型中是否丢了重要的解释变量),在随后弹出的对话框中填入拟加入的解释变量GDP,DEF。可得结果F = 537.5。,例11.1:建立中国国债发行额模型,(第3版256页),11.4 似然比(LR)检验,(第3版257页),11.4 似然比(LR)检验,(第3版258页),似然比(LR)检验的EViews操作有两种途径。 (1)在非约束模型估计结果窗口中点击View,选Coefficient Tests, Redundant Variables -Likelihood Ratio功能(

9、模型中是否存在多余的不重要解释变量),在随后弹出的对话框中填入GDP,DEF。可得结果。其中LR(Log likelihood ratio)= 90.34,与上面的计算结果相同。(2)在约束模型估计结果窗口中点击View,选Coefficient Tests, Omitted Variables -Likelihood Ratio功能(模型中是否丢了重要的解释变量),在随后弹出的对话框中填入拟加入的解释变量GDP,DEF。可得结果。其中LR(Log likelihood ratio)= 90.34,与上面的计算结果相同。,11.4 似然比(LR)检验,11.5沃尔德(Wald)检验,(第3版2

10、59页),11.5沃尔德(Wald)检验,(第3版260页),11.5沃尔德(Wald)检验,(第3版260页),11.5沃尔德(Wald)检验,(第3版261页),在原假设 1 2 = 3 成立条件下,W统计量渐近服从 (1) 分布。,11.5沃尔德(Wald)检验,(第3版262页),11.5沃尔德(Wald)检验,(第3版263页),11.5沃尔德(Wald)检验,(第3版263页),在(11.20)式窗口中点击View,选Coefficient Tests, Wald-Coefficient Restrictions功能,并在随后弹出的对话框中填入C(2)/C(3)=0.5,得输出结果

11、如图11.7。其中2 = 0.065即是Wald统计量的值。上式W= 0.075与此略有出入。因为W= 0.065对应的概率大于0.05,说明统计量落在原假设的接收域。结论是接受原假设(约束条件成立)。,11.5沃尔德(Wald)检验,(第3版263页),11.6 拉格朗日乘子(LM)检验,拉格朗日(Lagrange)乘子(LM)检验只需估计约束模型。所以当施加约束条件后模型形式变得简单时,更适用于这种检验。 LM乘子检验可以检验线性约束也可以检验非线性约束条件的原假设。对于线性回归模型,通常并不是拉格朗日乘子统计量(LM)原理计算统计量的值,而是通过一个辅助回归式计算LM统计量的值。,(第3

12、版264页),(第3版第265页),11.6 拉格朗日乘子(LM)检验,LM检验的辅助回归式计算步骤如下:(1) 确定LM辅助回归式的因变量。用OLS法估计约束模型,计算残差序列,并把作为LM辅助回归式的因变量。(2) 确定LM辅助回归式的解释变量。例如非约束模型如下式, yt = 0 + 1 x1t + 2 x2 t + + k xk t + ut 把上式改写成如下形式ut = yt - 0 - 1 x1t - 2 x2 t - - k xk t 则LM辅助回归式中的解释变量按如下形式确定。- , j = 0, 1, , k. 对于非约束模型(11.26),LM辅助回归式中的解释变量是1,

13、x1t , x2t , , xk t 。第一个解释变量1表明常数项应包括在LM辅助回归式中。,11.6 拉格朗日乘子(LM)检验,(3) 建立LM辅助回归式,= + 1 x1t + 2 x2 t + + k xk t + vt , 其中由第一步得到。 (4) 用OLS法估计上式并计算可决系数R 2。 (5) 用第四步得到的R2计算LM统计量的值。LM = T R 2 其中T表示样本容量。在零假设成立前提下,TR 2 渐近服从m个自由度的 2(m) 分布,(m)LM = T R 2 2 (m) 其中m表示约束条件个数。,(第3版265页),11.6 拉格朗日乘子(LM)检验,(第3版266页),

14、11.6 拉格朗日乘子(LM)检验,11.7 邹(Chow)突变点检验(不讲) 11.8 JB(Jarque-Bera)正态分布检验(不讲),(第3版267页),11.9 格兰杰(Granger)因果性检验(不讲),(第3版277页),(第3版278页),11.9 格兰杰(Granger)因果性检验(不讲),注意: (1)“格兰杰因果性”的正式名称应该是“格兰杰非因果性”。只因口语都希望简单,所以称作“格兰杰因果性”。 (2)为简便,通常总是把xt-1 对yt存在(或不存在)格兰杰因果关系表述为xt(去掉下标 -1)对yt存在(或不存在)格兰杰因果关系(严格讲,这种表述是不正确的)。 (3)格

15、兰杰因果关系与哲学意义的因果关系还是有区别的。如果说“xt 是yt的格兰杰原因”只是表明“xt中包括了预测yt的有效信息”。 (4)这个概念首先由格兰杰(Granger)在1969年提出。,(第3版278页),11.9 格兰杰(Granger)因果性检验(不讲),例11.8: 以661天(1999年1月4日至2001年10月5日)的上证综指(SHt)和深证成指(SZt)数据为例,进行双向的Granger非因果性分析。两个序列存在高度的相关关系,那么两个序列间可能存在双向因果关系,也有可能存在单向因果关系。,(第3版278页),11.9 格兰杰(Granger)因果性检验(不讲),(第3版279

16、页),11.9 格兰杰(Granger)因果性检验(不讲),(第3版280页),11.9 格兰杰(Granger)因果性检验(不讲),通过EViews计算的Granger因果性检验的两个F统计量的值见图。SHt 和SZt之间存在单向因果关系。即SZt是SHt变化的Granger原因,但SHt 不是SZt变化的Granger原因。,(第3版280页),11.9 格兰杰(Granger)因果性检验(不讲),Granger非因果性检验的EViews操作是,打开SHt和SZt的数剧组窗口,点击View键,选Granger Causility功能。在随后打开的对话框口中填上滞后期数2,点击OK键,即可得

17、到图11.20的检验结果。 用滞后5, 10, 15, 20, 25期的检验式分别检验,结果见下表:,结论都是上海综指不是深圳成指变化的Granger原因,但深圳成指是上海综指变化的Granger原因。,(第3版280页),11.9 格兰杰(Granger)因果性检验(不讲),注意: (1)滞后期k的选取是任意的。实质上是一个判断性问题。以xt和yt为例,如果xt-1对yt存在显著性影响,则不必再做滞后期更长的检验。如果xt-1对yt不存在显著性影响,则应该再做滞后期更长的检验。一般来说要检验若干个不同滞后期k的格兰杰因果关系检验,且结论相同时,才可以最终下结论。 (2)当做xt是否为导致yt变化的格兰杰原因检验时,如果zt也是yt变化的格兰杰原因,且zt又与xt相关,这时在xt是否为导致yt变化的格兰杰因果关系检验式的右端应加入zt的滞后项。 (3)不存在协整关系的非平稳变量之间不能进行格兰杰因果关系检验。,(第3版281页),11.9 格兰杰(Granger)因果性检验(不讲),第11章结束.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报