1、化工数学各章习题选解(仅供参考)第一章习题1. () 在一个有效容积为 V 的半连续式搅拌反应器中,由原料生产物质,若浓度为 c0 流量为 Q 的溶液加入空反应器,反应遵循以下连串 -可逆步骤CBAkk 321且所有的反应均为一级,证明在反应器中的克分子数 NB 是以下微分方程的解RdtPtN2式中 10332kQcC证明:对 A、B 分别作质量衡算,有A: )1(210dtNcABAB: 23kNk由(2)得到: 102(3)AABcQdt(3)代入(2) ,得: 2103123()(4)BBNkcNkt令 123130,PRCcQ得2 (5)BBdtt证毕。2. 冬天的池塘水面上结了一层厚
2、度为 l 的冰层,冰层上方与温度为 Tw 的空气接触,下方与温度为 0的池水接触。当 Tw0时,水的热量将通过冰层向空气中散发,散发的热量转化为冰层增加的厚度。已知水结冰的相变潜热为 Lf,冰的密度为 ,导热系数为 k,导温系数为 ,求:1) 当气温 Tw 不随时间变化时,给出冰层厚度随时间变化的关系,若Lf3.35 105J/kg,913kg/m 3,k2.22W/m K,T w10,问冰冻三尺,需几日之寒?2)当气温随时间变化时,设 TwT w (t)已知,导出冰层厚度变化的完整数学模型。解:(1) 冰层的温度为 0,水通过冰层向空气散发热量,记为 Q,该热量用于水结成冰。假设冰层面积为
3、s,厚度为 l 根据导热方程,可得: sdlLtTkQfw)(代入数值,L f 3.35105J/kg,913kg/m 3,k2.22W/m K,T w10,l 1m,求解积分上式得:10053.912dtttt79.7 天80 天若冰冻三尺,在 Tw10 时,需要约 80 天。(2) 若 TwT w (t),冰层厚度为 l根据热量守恒: sdlLtlskQf)0(ldLwf两边积分: tkTltlf00tf dL25.厚度变化与 Tw 的关系为:tfkl03. () 在一个半分批式搅拌反应器中进行着一级放热化学反应,反应速率常数由 Arrhenius 关系式给出,反应热由釜内的冷却盘管移出,
4、请自行设定有关的参数,导出该反应器的数学模型。解:设物料以恒定的体积流量 F 加入,则反应器中反应物浓度 CA 与温度 T 由以下物料衡算与热量衡算方程给出物料衡算方程 100()(1exp()AAdVCFrtkERT能量衡算方程 2 0 ()()()(2ppcArdCTVFCTKkVHt合并,得数学模型为 1 2 0000() ()()() (3)exp(),AA ppcArAdVkt dCTVFCTKkCVHttEkRcT式中 K(T Tc)A 为冷却移热,kC AV(-H r)为反应热。4 ()采用微元分析法推导出柱坐标系中的不定常热传导方程。解:考虑柱坐标系中热传导方程的形式。柱坐标系
5、下的三个空间变量:向径 r,经度角 ,高度 z。在这三个方向上,与自变量的微分变化所对应的线段微元长度分别是 (,) drdz( 4)由偏导数的定义,温度梯度T 在三个方向的分量即温度在每个方向上的微元增量除以相应的线元长度,即 (,) TrZ( 5)于是 Fourier 热传导定律在柱坐标系中的分量形式为 ,-(,) rz Tqk( ) ( 6)接着考虑各方向输入和输出的微元通量,首先考虑 r 方向 () () TkrdzTkrdz输 入 项 : ( 7)输 出 项 : ( 8)于是 r 方向的净输入通量为: (9)()krz对 方向作同样的分析, () () () TkdrzTkdrzkr
6、zr输 入 项 : ( 10)输 出 项 : ( )净 输 入 通 量 : ( 12)z 方向的分析,() () () TdrzTkkdrzzrz输 入 项 : ( 13)输 出 项 : ( 4)净 输 入 通 量 : ( 15)微元体内的积累项: (16)pTCdt将三个方向输入微元的热流净增量加和并令其等于积累项,就得到(17)211()Trt z5. 风吹过皮肤表面时,人会有干燥凉爽的感觉,这是因为风的吹拂强化皮肤表面的对流传热与传质,形成一个速度,温度,浓度(含水量)的边界层,设流动为层流(微风) ,考虑出汗的蒸发潜热,求:1)列出皮肤表面的三传问题的边界层方程,根据实际情况适当简化并
7、给出问题的边界条件;2)将上述问题无量纲化,并解释所得到的各无量纲参数的物理意义;3)试分析速度分布,温度分布,含水量分布分别与哪些无量纲参数有关,并用简单的函数关系示意;4)根据所得结果定性的解释一些经验常识:为什么风越大越感觉到冷?为什么出汗后擦了汗感觉更凉快?当空气中湿度变化时,对表面散热会带来哪些影响?在冬天和夏天,人体对空气湿度的增加会有什么样的感觉?解:1)同时考虑流动传热传质时的边界层传递方程是 22p i2ii( ()()TCk)Hrycc(DxxiupugTgCxxyux=i) -)表示重力在 x 方向的分量, 为热膨胀系数, 为密度变化系数g水汽化潜热 水蒸发速度H=ir由
8、于 可忽略, , 可忽略, px0xg2()uy化简后 2p i2ii(TCkHrycc(Diuxux=i) )边界条件y0, u0(皮肤表面气流速度) TT 0(皮肤表面温度) cc 0(皮肤表面的含水量)y 1 uu(速度边界层外气流速度)y 2 TT (温度边界层外气流温度)y 3 cc(浓度边界层外气流中含水量浓度) 1, 2, 3 分别为速度边界层,温度边界层,浓度边界层的厚度。2)无量纲化 00xTcu无量纲物理性质的比值 1PrvTciSD无量纲化后 2TTi2ppcci2HrkyCyCDvvvTcuxux= 边界条件在 0,1y对于较大的 Pr 或 Sc,热传导与扩散效应与黏性
9、比较相对较弱,热边界层和扩散边界层位于速度边界层内部,反之,对于较小的 Pr 或 Sc,热传导与扩散速率大于黏性传递速率,热和扩散边界层就有可能扩展到速度边界层之外。3)速度分布,温度分布,含水量分布的简单函数关系式 0000(1)1()(1)1()(1)xxTTccu4)风越大,皮肤表面的气体更新速度越快,水的蒸发速度变快,传热越快,感觉到冷出汗后感觉更凉快,是因为减小了汗水层的厚度,蒸发速度加快当空气中湿度变大时,皮肤表面水的蒸发速度变慢,不利于传热夏天空气湿度增加,汗水蒸发困难,人感觉闷热冬天空气湿度增加,少量的汗水在皮肤表面使人感觉温暖。6 ()在管式反应器模型(1.4.15)中,当
10、Pe0 时,相当于完全返混的情况。试从方程(4.15)出发,通过适当的体积积分和取极限 Pe0,导出均相釜式反应器模型。解:当 Pe0 时,由原方程(4.15)及边界条件可知,c=const,说明在完全返混的情况下,反应器内具有均匀的浓度。对于任意的 Peclet 数,对方程 4.15 进行体积积分得到 (31)21111000010cdzDazdzPec式中 为反应器内的平均浓度。将边界条件(4.15)代入(31) ,得到(32)10czdDa=, ()上式对任意 Peclet 数均成立,仅当 Pe0 时,反应器内浓度均匀, ,上式成为无量1cz纲的理想混合釜式反应器数学模型。7. () 烯
11、烃在 ZieglarNatta 催化剂颗粒上的气相聚合过程可用最简单的固体核模型来描述,如附图所示。气相中的烯烃单体在催化剂颗粒(图中阴影部分)表面聚合后生成一多孔的固体聚合物壳层并将催化剂包裹在内部,外部的气相烯烃单体只有扩散穿过此固体聚合物壳层后才能到达催化剂表面参与反应。试求: (i)证明单体在壳层中的扩散及聚合物粒子的生长由以下方程描述221()MDrtRrsWMDdtR|式中为单体浓度(mol/m 3), s 为聚合物壳层的密度(kg/m 3), 为单体在壳层中的扩散系数(m2/s), M 为单体的分子量,R 为聚合物颗粒的半径。(ii)设催化剂核半径为 rc,单体在外部气相本体中的
12、浓度为 ,以上述参量为 r 和 M的特征尺度,并引入适当的时间尺度,将上述方程无量纲化。然后根据气相单体与固体聚合物密度之间的巨大差别( s/ g 103)将问题进一步简化。(iii)设单体在催化剂核表面的浓度恒为 0(瞬时反应) ,R 的初始值为 R0(R0 rc),求解上述简化后的模型并给出聚合物粒子半径 R 随时间的变化关系。提示:对单体的浓度分布可采用拟稳态假定。解:为简化计算,令单体分子量 Mw 的单位是 kg(1) 问题建模如图 1 所示,对微元 dr 作物料衡算 2()()0(18),4AdrJrtJD得 21()(9Mrt如图 2.对微元 dR 作物料衡算 224(0)swrR
13、RdDt得 (1)rRstRrrdr+R RdR+图 1 图 2(2) 无量纲化与简化分析:本问题存在着两个特征时间尺度,一个是单体组分内扩散通过聚合物壳层的时间尺度,该尺度可以从内扩散方程(19)中得出,为此,近似取 代替 ,M/r 代替1crD 1Mt, M/r2 代替 ,就可估算出 ;另一个是聚合物颗粒生长的特征时间尺度 2,Mr2r21crD可以从方程(20)中用类似的比值代替微分的办法估算出 。在对问题进行无211sg=量纲化时,不同时间尺度的选择代表着所关注的不同过程。如果选取 为时间尺度,式(20)和(21)可分别无量纲化为(仍然用当前变量表示 121crD无量纲变量): 21(
14、)(3cRrMtd,1ggBws=此时式(23)中出现一个小参数 。时间尺度 1 称为快时间尺度,选择这一尺度所得到的方程(22)中不含有小参数 ,表示我们关注的是单体 M 通过聚合物壳层的不定常扩散而不是粒子的生长。略去(23)中的小参数项后得到 ,说明在考虑单体内扩散时,由于时Rconst间较短,可以将粒子半径作为常数考虑。因此,选择 1 为时间尺度显然不妥,得到的不是我们希望关注的问题。如果选取 为时间尺度, (20) 、 (21)式可无量纲化为: 22csgrD21()(56cRrMtd此时粒子生长方程(26)不含小参数,粒径将随时间变化,表示我们关注的是颗粒的生长。而单体内扩散方程(
15、25)中的时间导数项含小参数 ,可以略去,说明在慢时间尺度 2 上考虑粒子生长时,单体的内扩散过程可以忽略时间变化项,内扩散可以作为拟稳态过程来考虑。从 和 中得到的不同简化模型说明时间尺度的选择需要根据建模目的来考虑,使简化 1 2后的模型能够代表所关注的过程的主要特征。(3)对单体的浓度分布作拟稳态(时间导数项为零)假设,即(25)中的 ,得0Mt21()0,(27)cMrRr解得 1()(28)cMr代入(26) ,得 20()(9)ccdRtr解得 23230ccRrRtr8. 在缺乏数学模型的某些情况下,仅仅根据量纲分析或尺度比较也可以获得一些很有价值的结果,考虑以下例子:1) 对于
16、固体颗粒在黏性流体中的 Stock 流动问题,颗粒受到的阻力 f 仅仅与颗粒尺度d,动力学粘度 和速度 有关,即ff(d,)根据量纲齐次化的要求,物理方程等式两边的量纲应该相同,而有参数 d, 组成的具有离地量纲的参量只可能是 d,因此上述函数关系只可能取一下形式,fAd式中 A 是一个只与颗粒形状有关的常数,上式即为 Stock 定律。现根据上述量纲分析方法分析湍流的消磁度运动。湍流中存在一系列大小不同的涡旋,能量从大尺度涡旋顺序传递给消磁度涡旋,同时将机械能耗散为热能,其中最小的涡旋尺度称为 Kolmogorov 尺度,在这个尺度上,黏性和能量耗散占优,因此只有运动学粘度 v (m2/s)
17、和能量耗散速率 (W/Kg)两个产量起作用,其他物理量都可以用这两个量表示。试根据量纲齐次化原理推导出 Kolmogorov 尺度 及局部速度 与 v, 的关系(可相差一个常数)2)流体在自由空间中的射流形成一个夹角为 的圆锥型区域,如图所示,设 UU (x)为距喷口x 处的平均流速,RR(x)为 x 处的射流半径,试根据总动量 沿 x 方向守恒的要求确定速度 U2和射流区总流量 沿 x 的变化关系(可相差2RQ一个常数)3)对于放热反应,当反应器尺寸增大时,其体积按长度的三次方增长,而表面积却按平方增长,因此体积增大有利于热量的增加,而体积减小有利于冷却散热。这是化学工程中说明“放大效应”的
18、一个典型例子。根据类似的道理解释为什么生活在寒冷地区的动物一般体型较大(例如北方人就比南方人高大) ,而且形状趋于圆滑,而热带地区的动物体型较小且趋于瘦长(例如南方人比北方人相对较瘦,且身体凸出部分的轮廓更为明显) 。解:1)分析:题中出现的符号意义如下Kolmogorov 尺度 m能量耗散速率 W/Kg运动学粘度 v m2/s局部速度 m/s从 fAd 可知 f 量纲与 d 相同,又 的量纲 W/Kg 与 的量纲相同V(f 力N, 速度m/s, 密度Kg/m 3,V 体积m 3)可知 V 与 3 量纲相同,f 与 v 量纲相同, 与 量纲相同,带入 中3=v22)分析:总动量 沿 x 方向守
19、恒,设 C(C 为常数) 。2UR2UR又 ,将 R 带入总动量表达式中,tg习题 8:湍动射流22()UtgxC()t2 212()()tgxQRtxCtg=3)分析:将人体看成一个反应器,食物在体内消化放出热量,除供人体正常活动所需的能量和储存在体内外,以热量的形式通过体表释放到体外。人体散热与人体表面积和外界温度和人体温度的差值成正比,表面积与人体尺寸的平方成正比。可记为散热A*温度差 *表面积。人体放热与人体体积成正比,体积与人体尺寸的立方成正比,可记为放热B*体积(A,B 为关于人体散热放热的常数) 。为保持人体温度一定,放热与散热需要平衡,散热放热。寒冷地区的外界温度和人体温度的差
20、值比热带地区大,所以需要的体积与表面积比也大,即表现为人体尺寸大,也就是人的体型较大,而形状圆滑是为了减小表面积所致。热带地区的人体型瘦长,身体凸出部分轮廓明显,可以增大表面积,方便散热。9. 在水平液面上垂直插入一个半径为 R 的毛细管,此时液体将在表面张力的拉动下沿着管中上升。弯曲液面形成的毛细压强可以用以下 YongLaplace 方程计算CosP2式中 为气液表面张力, 为气液界面与固壁之间的接触角,管中流体一方面受到毛细压强的驱动而上升,一方面又受到重力和粘性阻力的作用,设流动速度遵从粘性管流的 Poiseuille分布,求:1) 对于两端开口的毛细管,证明液位高度 H 随时间 t
21、的变化满足以下方程 2281gRCosdt式中 为液体的动力学粘度,g 为重力。2)对于上端封闭的毛细管,设总管长为 l,管内气体满足理想气体状态方程,试推导相应的液位高度 H 的变化方程。3)从上述方程中求出最大液位高度 Ho 和时间变化关系 H(t),据此讨论 H 变化的趋势。解:(1) 弯曲液面形成的毛细压强可以用以下 YongLaplace 方程计算,同时又受到重力的作用产生压强,总的 P 为:gRCos2式中 为气液表面张力, 为气液界面与固壁之间的接触角,R 为毛细管半径。Poiseuille 分布,体积流率的表达式为: HPRdttV842式中 为液体的动力学粘度,g 为重力。
22、222 281gRCosHgRCost(2) 若毛细管上端是封闭的,则 P 由三部分组成,还有一部分是液面上端产生的压强。 HLgRCosPo2式中 Po 为大气压强,L 为毛细管长。 HLRPgCosHRLPgRCsdtH oo 2222 2818(3) 当达到最高液位 Ho 时, ,则:0dt0 222 2818 gRCosHgRCsPRdtgCosoHgRCosgsHdt 8228 2oo tHdRCs002积分得: 12ln2ln128 2420 RCossHgRCososgt oo从上式可以看出,H 先增高,到最大值 后开始下降。10. 气液两相的传质过程与色谱过程有许多类似之处,例
23、如,气相通过反应器(鼓泡塔、板式塔、填料塔等)的流动可以看成是溶质通过固定相的运动,气液传质阻力可类比于气固传质阻力,气液两相的逆流操作模式也与移动床相似。此外,气液两相在界面上处于平衡状态,由 Henry 定律表述,与 7.2 节考虑的微孔分子筛的内扩散过程类似。与色谱问题不同的是,许多气液反应器(鼓泡塔与搅拌釜)中的液相或液固两相一般都处于全混流状态,而色谱柱中固定相是静止的,移动床中固体接近平推流。试根据与移动床的类比建立如图所示的鼓泡塔反应器的稳态数学模型,图中气体从塔底加入,经分布器之后形成分散的气泡并在液体中浮升,最后从容器的上部输出;液体则从塔顶加入,从底部流出。气相中的组分 A
24、被液体吸收后在液相中发生一级化学反应。鼓泡塔中气相的流动可考虑为平推流,液相考虑为全混流。其它已知的参数为:鼓泡塔液位高度 l,气含率 g,空塔气速 U,加入液体的质量流率 F,单位体积气液传质系数 kLa,一级反应动力学常数 kA,Henry 系数 HA。所建立的数学模型要求包括以下内容:1)设 cg 和 cL 分别为反应组分在气相和液相中的浓度,给出其方程和边界条件;2)如果是强放热反应,反应热通过溶剂蒸发和气液相的连续流动移出,请自行设定有关物性参数,给出温度 T 满足的方程。解:数学模型一般包括物料衡算、热量衡算和动量衡算,对于鼓泡塔的气液反应体系,气液两相的温度场计算是不必要,因为塔
25、内混合良好,温差很小。动量衡算也非必要。物料衡算是要考虑到对流、相间传质、轴向分散及化学反应等影响因素。(1) 假设塔内等温,作气相及液相的物料衡算:气相: )/()/(1)( tUFlZFEZlUFHlkZF gigiggligiig 流入项 传质项 返混项 积蓄项液项: )/()1()/()1()( tFlkcZFZllkZF lilgllillgligiil 流入项 传质项 返混项 反应项 积蓄项式中: RgigAUcFLGL气 体 分布 器 Gl液位习题 10:鼓泡塔反 应器RgcAFU1假设 气相平推流 液相全混流 0ZgE1ZlE边界条件: 气相:Z0: 0iglFZ1: /dZi
26、液相:Z0: 0ilZ1: 1(1)(1)()tgilililDdFFlZ(2) 进气温度为 Tg,液体为 Tl,气体热容 cg,液体热容 cp,液体的质量流量 Fl,气体的质量流量 Fg,单位时间反应热为 Q,C 为常数。鼓泡塔内温度均匀,塔内温度和排出的气体液体温度均记为 T,根据能量守恒: dtccgglpl 11填料塔广泛用于气体吸收,气液两相采用逆流操作,液体从塔顶均布后加入,沿填料表面成液膜下降,气体从塔底加入,沿塔上升并与液体实现逆流接触,气体中的活性组分被液体吸收后从塔底流出,净化后的气体从塔顶排出,如图所示。设从塔底加入的气体中含有待吸收组分 A 和惰性气体,惰气流量为 G(
27、mol/s) ,从塔顶加入的液体惰性溶剂的流量为 L(mol/s) ,组分 A 在液相中以一级反应进行分解,给定塔的直径 D 和塔高 H、单位体积填料的液体持液量 L(m 3/m3)和气液传质系数 kLa,以及化学反应速率常数 kA、气液相 Henry 系数 HA,试用微元分析法建立一数学模型,描述气相浓度 yA (mol/mol 惰气)和液相浓度 xA (mol/mol 溶剂)的沿塔分布,然后从模型中消去 xA,得到 yA 的单一方程,并给出适当的边界条件。提示:可假设在气液界面上满足 Henry 定律,则两相传质速率为 kLa (yA HAxA)。解:分析 此填料塔用于气体的化学吸收,塔内
28、物料平衡涉及两相:气相和液相。可分别对气相及液相中的待吸收组分作质量守恒,守恒方程中将涉及到的未知量包括:待吸收组分 A 在气相中的浓度 yA(molA/mol 惰性气体)和待吸收组分 A 在液相中的浓度 xA(molA/mol 溶剂) 。守恒方程数与未知量数均为 2,在给定边界条件下可以得到微分方程的特解。假设 习题 11:填料吸收塔1 设待吸收组分 A 在液相中的反应速率为:Adcrkxt该反应为一级反应,反应速率常数为 k(单位 mol/m3s)2 设吸收塔在连续操作过程中处于稳态,进而在质量衡算方程中涉及到的积累项均为 0解答步骤在填料塔任一高度 h 处取一厚度为 dh 的体积微元(见
29、习题 11 图) ,分别考虑微元中气相和液相的待吸收组分 A 的质量守恒:气相GA输 入 项 =y+da输 出 项 气 液 相 间 的 质 量 传 递 量式中 气液相间的传质方向是由气相到液相,因而传递量属于输出项,其传质速率为:,其中 kL 是以气相摩尔分率差 为总传质推动力的总传质系数LAkayHxAyHx(单位 kmol/(m2sy)) ,a 是单位体积填料层所提供的有效传质面积(单位 m2 传质面积/m 3填料体积) 。因而: 24LADkyxdh气 液 相 间 的 质 量 传 递 量式中 D 是填料塔直径, 为所取微元内的填料体积。24dh24LAkayHxdh输 出 项 =G+由于
30、气相中不发生待吸收组分 A 的分解反应,因而:0生 成 项吸收塔处于稳态操作,因而: 积 累 项 =根据质量守恒: 输 入 项 输 出 项 生 成 累 积 累 项即: 204AALADydGykayHxdh 整理得: 204ALAykaxdh204ALAdyDGkaHxh液相: A输 入 项 气 液 相 间 传 质 量式中气液相间的传质方向是从气相到液相,因而传弟量属于输入项,它的大小与气相输出项中的气液传质量相同,为: 24LADkayHxdh气 液 相 间 的 质 量 传 递 量因而: 24LAkaydxxh输 入 项 d输 出 项 24ALDrh生 成 项式中-r A 为组分 A 在液相
31、中的应反应速率,单位:mol/m 3s。而 是在所取24LDdh填料微元中的持液量。 Adxrkt24ALDh生 成 项 2Lkd生 成 项 0积 累 项根据质量守恒: 输 入 项 输 出 项 生 成 累 积 累 项即: 22404LA LADkayHxdhkDxxdh整理得: 220LALdkhkyx相应边界条件:在填料塔底部 h=0 yA=yb 式中 yb 为进料气体中组分 A 的浓度 顶部 h=H xA=xa 式中 xa 为进料液体中组分 A 的浓度至此,联立关于气相与液相质量守恒的两个常微分方程,并加入边界条件: 2201420ALLAadyDGkHhxkyhx求解此一阶常微分方程组即
32、可得到气液相中组分 A 的浓度沿着塔高方向上的分布。下面对此常微分方程组进一步化简,消去 xA,以得到一个只含 yA 二阶常微分方程。对式(1-11-1)变形,得: 24ALdyGykaDhxH代入式(1-11-2)得到: 22 22444 0AAAALL LL dyGydydykaDhkDGHhkaDkahH 2 20AALLydykkHdh相应边界条件: 204AaALahydyGkDhxxH化简得: 204AaAaALhydGHyxkDh从而得到关于 yA 的一个二阶常微分方程及其边界条件:2 224 040AALLaAaALdydykDGkaDHhhhyxHkd这是一个常系数二阶常微分
33、方程,将实际生产中的数据代入后可以很容易解出关于组分 A 在气相中的浓度 yA 沿塔高方向上的分布,进而得到组分 A 在液相中的浓度 xA 沿塔高方向上的分布。12. 在一鼓泡容器内,初始时刻装有体积为 V 的氨盐水(NH 3NaClH 2O),随后以流量F 通入 CO2 气体,在液相中即发生以下碳酸化反应(1) CONHCOk2321(2)32N(3)3ak这是制取纯碱(Na 2HCO3)的基本反应,是一个连串反应过程。其中反应(1) 为快速反应,发生在气液界面附近的液膜之内,而反应(2)、(3)为慢反应,发生在液相本体之中。设各步反应均为拟一级反应,其中 NH3 和 Na+ 大大过量,其浓度可近似考虑为常数。容器中的气含率 、气液比表面积 aV 和液膜厚度 均为已知量,液膜体积 aV c*)?解: 20dcDUqx2齐次方程的特征方程为 20UD解得 12所以齐次方程的通解为(1)12expUcD利用比较系数法,求得非齐次方程的特解(2)*q所以,非齐次方程的通解为