收藏 分享(赏)

1.3.2函数的奇偶性.ppt可用.ppt

上传人:weiwoduzun 文档编号:3279310 上传时间:2018-10-10 格式:PPT 页数:18 大小:2.80MB
下载 相关 举报
1.3.2函数的奇偶性.ppt可用.ppt_第1页
第1页 / 共18页
1.3.2函数的奇偶性.ppt可用.ppt_第2页
第2页 / 共18页
1.3.2函数的奇偶性.ppt可用.ppt_第3页
第3页 / 共18页
1.3.2函数的奇偶性.ppt可用.ppt_第4页
第4页 / 共18页
1.3.2函数的奇偶性.ppt可用.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、,1.3.2函数的奇偶性,观察下图,思考并讨论以下问题:,(1) 这两个函数图象有什么共同特征吗? (2) 相应的两个函数值对应表是如何体现这些特征的?,实际上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x),这时我们称函数y=x2为偶函数.,1偶函数,一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)=f(x),那么f(x)就叫做偶函数,例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.,观察函数f(x)=x和f(x)=1/x的图象(下图),你能发现两个函数图象有什么共同特征吗?,f(-3)=-3=-f(3) f(-2)=-2=-f(2) f(-1)

2、=-1=-f(1),实际上,对于R内任意的一个x,都有f(-x)=-x=-f(x),这时我们称函数y=x为奇函数.,f(-3)=-1/3=-f(3) f(-2)=-1/2=-f(2) f(-1)=-1=-f(1),2奇函数,一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)= f(x),那么f(x)就叫做奇函数,注意:,1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;,2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称),3、奇、偶函数定义的逆命题也成立,即若f(x)为

3、奇函数,则f(-x)=-f(x)有成立.若f(x)为偶函数,则f(-x)=f(x)有成立.,4、如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.,例5、判断下列函数的奇偶性:,3.用定义判断函数奇偶性的步骤:,(1)、先求定义域,看是否关于原点对称;,(2)、再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立.,课堂练习,判断下列函数的奇偶性:,3.奇偶函数图象的性质,1、奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.,2、偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.,说明:奇偶函数图象的性质可用于:a、简化函数图象的画法. B、判断函数的奇偶性,例3、已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象.,解:画法略,利用对称性画奇函数,本课小结,1、两个定义:对于f(x)定义域内的任意一个x,如果都有f(x)=-f(x) f(x)为奇函数如果都有f(x)=f(x) f(x)为偶函数,2、两个性质:一个函数为奇函数 它的图象关于原点对称一个函数为偶函数 它的图象关于y轴对称,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报