收藏 分享(赏)

高中数学旧人教版教时教案(广西专用):排列2.doc

上传人:无敌 文档编号:314518 上传时间:2018-03-27 格式:DOC 页数:3 大小:95KB
下载 相关 举报
高中数学旧人教版教时教案(广西专用):排列2.doc_第1页
第1页 / 共3页
高中数学旧人教版教时教案(广西专用):排列2.doc_第2页
第2页 / 共3页
高中数学旧人教版教时教案(广西专用):排列2.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、排 列课题:排列的简单应用(1)目的:进一步掌握排列、排列数的概念以及排列数的两个计算公式,会用排列数公式计算和解决简单的实际问题 过程:一、复习:(引导学生对上节课所学知识进行复习整理)1排列的定义,理解排列定义需要注意的几点问题;2排列数的定义,排列数的计算公式 或 (其中 mn m,nZ))1()2(1mnnAm )!(nA3全排列、阶乘的意义;规定 0!=14 “分类” 、 “分步”思想在排列问题中的应用二、新授:例 1: 7 位同学站成一排,共有多少种不同的排法?解:问题可以看作:7 个元素的全排列 50407A 7 位同学站成两排(前 3 后 4) ,共有多少种不同的排法?解:根据

2、分步计数原理:76 543217!5040 7 位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的 6 个元素的全排列 =7206 7 位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有 种;第二步 余下的 5 名2A同学进行全排列有 种 则共有 =240 种排列方法5A25 7 位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步 从(除去甲、乙)其余的 5 位同学中选 2 位同学站在排头和排尾有 种方法;第二步 从余下的 5 位同学中选 5 位进行排列25(全排列)有 种方法 所

3、以一共有 2400 种排列方法A25A解法二:(排除法)若甲站在排头有 种方法;若乙站在排尾有 种方法;6 6A若甲站在排头且乙站在排尾则有 种方法所以甲不能站在排头,乙不能排5在排尾的排法共有 =2400 种7A625小结一:对于“在”与“不在”的问题,常常使用“直接法”或“排除法” ,对某些特殊元素可以优先考虑例 2 : 7 位同学站成一排甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的 5 个元素(同学)一起进行全排列有 种方法;再将甲、乙两个同学“松绑”进行排列有 种方6A 2A法所以这样的排法一共有 1440 种62甲、乙和丙三个同学都相

4、邻的排法共有多少种?解:方法同上,一共有 720 种53甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有 6 个元素,因为丙不能站在排头和排尾,所以可以从其余的 5 个元素中选取 2 个元素放在排头和排尾,有 种方法;将剩下的 4 个元素进行全排列有 种方法;最后将甲、25A4A乙两个同学“松绑”进行排列有 种方法所以这样的排法一共有2A960 种方法254解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有 6 个元素,若丙站在排头或排尾有 2 种方法,所以丙不能站在排头和排尾的排法有5种方法960)2(256

5、A解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有 6 个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有 种方法,14A再将其余的 5 个元素进行全排列共有 种方法,最后将甲、乙两同学 “松绑” ,5A所以这样的排法一共有 960 种方法1452小结二:对于相邻问题,常用“捆绑法” (先捆后松) 例 3: 7 位同学站成一排甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法) 360267A解法二:(插空法)先将其余五个同学排好有 种方法,此时他们留下六个位5置(就称为“空”吧) ,再将甲、乙同学分别插入这六个位置(空)有 种方26A法,所以一共有 种方法36

6、025A甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有 种方法,此时他们留下五个“空” ,再将甲、乙4和丙三个同学分别插入这五个“空”有 种方法,所以一共有 144035A4A35种小结三:对于不相邻问题,常用“插空法” (特殊元素后考虑) 三、小结:1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻) ;某些元素要求分离(即不能相邻) ;2基本的解题方法: 有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法) ; 某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法” ; 某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法” ; 在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基四、作业:课课练之“排列 课时 13”

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报