1、1税收分析常用方法2前 言统计学是一门收集、分析、表述和解释数据的科学,广泛应用于社会学、经济 学、管理学、工程学等 领域。在我 们税收分析工作中也大量应用着统计学,例如如何反映税收整体规模和水平,怎样表述税收的发展水平,税收时间序列发展有哪些趋势,经济税收间存在怎样量的关系,如何运用税源调查的数据对整体税源状况作出判断等等。一般的统计学教材均是站在统计角度阐述相关理论和方法体系,相对而言,专门介 绍税收统计分析方法的工具书是较少的,而随着对税收分析工作的日益重视和深入,特别是总局将税收分析员纳入到新时期“六员”培训目标的提出,更凸显了编写一本较为系统、全面的工具书的必要性和重要性。本书正是编
2、者根据需要和长期工作经验,以税收分析为主线,将描述统计、推断统计等常用的统计分析方法进行系统介绍的一种尝试。本书共分为五章:第一章是税收指标描述分析;第二章是税收时间序列的趋势分析;第三章是税收与经济关系因素分析;第四章是行业税负分析;第五章是税源抽样调查数据分析。本书立足于基础的普及性工具书,在介绍有关常用统计方法的同时,还详细说明了上述方法在 EXCEL 中的实现与应用,希望能对广大从事税收分析的税务干部做好本职工作能有所帮助。由于受时间和编者水平所限,本书难免存在一些不足和疏漏,希望专家和读者给予批评指正。3目录第一章 税收指标的描述分析 3第一节 概 述 3一、常用的税收统计指标 3二
3、、税收分析数据的取得与整理 4三、税收分析的常用方法 6四、税收分析的常用工具 6第二节 税收总量指标分析 7一、税收总量指标的种类 7二、税收总量指标的分析要求 7三、总量指标在 Excel 中的图表描述 .8第三节 税收相对指标分析 8一、属于同一总体内部之比的相对指标 9二、属于两个总体之间对比的相对指标 11第四节 税收指标动态分析 11一、常用的动态分析指标 12二、用 EXCEL 计算动态分析指标 .14第二章 税收时间数列的趋势分析 17第一节 概述 17一、时间数列的概念、种类、编制原则 17二、时间数列变动因素的构成与分解 18第二节 移动平均法 19一、移动平均法 19二、
4、用 EXCEL 计算移动平均数 .20第三节 指数平滑法 22一、一次指数平滑法 22二、用 EXCEL 进行指数平滑预测 .23第四节 季节变动法 25一、季节比率的测定方法 25二、趋势比率预测法 30第五节 长期趋势法 31一、预测步骤 32二、案例分析 32第六节:其他趋势预测方法 35一、LINEST 函数 35二、TREND 函数 .39第三章 税收与经济关系因素分析 41第一节 概述 41一、常用的经济指标 41二、经济指标数据的取得与调整 41第二节 宏观税负分析 42一、宏观税负的概念 424二、总局常用的几个分析口径 42三、影响宏观税负的因素 43第三节 税收弹性分析 4
5、3一、弹性及税收弹性的概念 44二、税收弹性变动规律 44三、影响税收弹性变动的因素 45第四节 税收与经济相关分析 45一、函数关系与相关关系 46二、相关关系的种类 46三、相关系数的测定与相关关系的判断 47第五节 税收与经济回归分析 49一、回归分析的概念 49二、回归模型的种类 49三、一元线性回归预测法 49四、多元线性回归预测法 56第四章 行业税负分析 61第一节 平均指标、标志变异指标 61一、常用的平均数指标 61二、标志变异指标 65三、Excel 中计算平均指标和标志变异指标的常用函数 .68第二节 行业税负 71一、行业税负涵义 72二、行业税负分析的意义 72三、行
6、业税负实证分析 72第三节 税负预警值的设定 73一、税负预警的涵义 73二、税负预警值的设定 73三、案例分析 74第五章 税源抽样调查的数据分析 75第一节 概述 75一、税源调查的目的和意义 75二、税源调查的基本方法 75第二节 抽样调查 76一、抽样调查的方法、方式 77二、对调查资料的审核 78第三节 抽样推断 78一、抽样推断概述 78二、抽样推断(总体参数估计)的基本原理、方法 79三、案例分析 82.11 年来市经济税收的基本情况 83一、经济运行情况 84二、国税收入情况 84.关于市税收与经济关系的研究 .85一、税收总量与 GDP 总量的关系 855二、税收总量与经济分
7、量的关系 90三、税收分量与对应经济指标的关系 98. 关于市税收与经济发展趋势的分析 .103一、将非线性函数线性化,计算相关数据 104二、构建回归模型,计算判定系数,确定最优模型 104.2005 年市国税收入形势预测 105一、年度序列趋势预测 106二、季度序列趋势预测 107三、税收与经济相关分析预测 1096第一章 税收指标的描述分析第一节 概 述税收统计分析是以税收经济现象的数量方面为研究对象的认识活动。税收统计分析以国家的经济政策和税收政策为理论基础,以统计分析方法为分析工具,对通过调查、搜集税源和税收收入情况等统计资料,进行加工整理、系统、定量的分析研究,从而认识税收工作的
8、本质和规律性,并据以对税收未来的发展趋势做出科学的预测,为加强税收的征收管理工作提供决策信息。一、常用的税收统计指标(一)税收统计数据的类型税收统计数据可分为:横截面数据和时间序列数据。横截面数据又称静态数据,它是指在同一时间相同单位的数量表现进行观察而获得的数据。例,某省 2005 年的税收收入。时间序列数据又称为动态数据,它是指在不同时间对同一总体的数量表现进行观察而获得的数据。例,某省 19942005 年的税收收入。(二)税收统计数据的构成税收统计数据一般含以下五部分:1、数据名称。表明客观事物某一方面的特征。如“税收收入” 、 “GDP”等。2、数据值。是数据名称的结果体现。如 10
9、00、10000 等。3、计量单位。分为两类名数和无名数。名数就是计量单位有具体名称。如实物计量单位(千克、米等) 、货币计量单位(元、万元、美元等)和劳动计量单位(工时、工日等) 。无名数只有抽象的名称或无名称,通常有系数、倍数、乘数、百分数等。4、时间范围。说明数据是时期数据还是时点数据。5、空间范围。给数据必要的空间限制。如“2004 年 GDP2000 亿元” ,因为7没有说明空间范围,就基本没有意义。(三)常用的税收收入指标税收收入指标具体包括各征收单位分税种不同时期的应征、入库、减免、提退、查补、欠税等各类税收数据。主要来源于税收征管信息系统、税源监控分析软件等。 二、税收分析数据
10、的取得与整理(一)税收分析数据的取得税收分析工作从搜集税收统计数据开始。人们要从数量上认识客观现象,就必须通过调查或实验来搜集数据。税收统计数据搜集的方式有两种;一种是直接向调查对象搜集反映调查单位的税收统计资料,一般称为原始资料,又称为初始资料;另一种根据研究的目的搜集已经加工、整理过的说明总体现象的资料,一般称为次级资料或第二手资料。对原始资料的搜集亦称为税收统计调查。1、间接的税收分析资料来源(1)公开出版物:各种 统计年鉴 、统计月报、报纸、杂志等。(2)有关机关的信息通报、纳税人申报的有关资料。(3)网络。例如:与税源密切相关的地区生产总值(GDP) 、工商业增加值、社会消费品零售总
11、额、产品销售收入、利润总额、固定资产投资、进出口总额、物价指数、工业用电量等综合性经济数据,主要来源于统计部门统计年鉴、月度统计报表及其他经济部门统计报表。税务机关所辖企业的销售收入(营业收入) 、利润、应征税收、库存、成本、折旧等各类企业微观经济指标,主要来源于纳税申报表以及有关征管法规规定纳税人上报的财务报表。2、直接的税收分析资料来源税收统计调查税收统计调查的方式主要有以下两种: (1)定期税收统计报表。又称“统计报表制度” ,它是以原始记录为依据,8按照规定的表格形式、时间和程序,自下而上系统地向各级领导部门提供资料的一种组织形式。(2)专门税收统计调查。它是为了某一特定目的和要求,专
12、门组织的一种搜集税收统计资料的调查形式。其目的就是研究税务工作中出现的新情况、新问题,它是定期统计报表调查的必要补充。专门税收统计调查又可分为重点调查和抽样调查等。(二)税收统计数据的整理税务统计数据资料经过调查取得后,还必须进行系统地整理。税务统计资料的整理是根据税收分析的要求,对统计调查取得的原始统计资料进行加工和汇总,从而使其系统化和条理化,得出能够反映税收特征的综合资料。它既是税收统计调查的继续和深化,又是统计分析的前提和基础。 1、税收统计资料整理的内容做好税收统计资料的整理工作,应预先制定整理方案和工作计划,它是通过一套综合表式和编制说明来反映的。税收统计资料整理的内容,主要包括:
13、统计资料的分组、汇总和统计图表的设计。统计分组是统计资料整理的基础,统计汇总是统计资料整理的中心内容,统计图表则是统计资料整理的表现形式。(1)统计资料的分组这是整理工作的关键步骤,其工作内容是将全部调查资料按照一定的标志加以区分,使反映相同性质的税收活动的资料归并在同一组内,以便于对比分析,通常可按以下标志分组:按税种分组。反映各个税种、税目之间的税收数额的比重和增减变化;按地区分组。反映各个地区之间的税收收入的分布和增减变化;按城乡分组。反映城乡税收收入比例的变化和增减变化;按行业分组。反映不同行业之间的税基、税源和税收状况;按时间分组。反映不同时期税收管理工作的发展和变化;按经济类型分组
14、。反映不同经济类型税收收入的变化情况及其对税收的影响;按重点产品分组。反映重点税源和税收的变动情况等。 (2)税收统计资料的汇总这是指统计资料经过科学分组后,按一定要求对统计资料进行综合归类。9汇总的形式主要有集中汇总和逐级汇总两种。集中汇总是指组织领导统计资料整理工作的工作机构,集中全部统计资料进行汇总;逐级汇总是指在汇总过程中,充分发挥各级税务部门的作用,将已经汇总好的资料逐级上报。 (3)统计图表的设计经过统计资料汇总,得出许多说明税收现象和过程的统计资料,并按一定的指标顺序排列在适当的表格内,或者根据统计资料汇制成图形。运用统计表,可以使大量统计数字系统化,便于对比分析,说明问题清晰醒
15、目;运用统计图,能将错综复杂的社会经济现象用一种清晰扼要的形式,准确形象地表达出来。因此,在实际工作中,恰当、准确地设计和运用统计图表是十分重要的。如某地各税种税收收入进度运用图表表示如下图 1-1020406080100增 值 税消 费 税内 资 所 得 税外 资 所 得 税个 人 所 得 税车 购 税三、税收分析的常用方法本书中详细介绍了税收常用的分析方法,主要有:税收指标的描述分析与趋势分析、经济与税收的相关分析、行业税负分析、税源抽样调查的数据分析等。四、税收分析的常用工具税收分析常用的软件有:SAS、SPSS、Excel 等,其中 Excel 使用最为普遍。本书将通过实例的形式,介绍
16、 Excel 在税收分析中的应用。Excel 是通过电子表格方式来进行数据录入、管理与分析的,最基本的操作对象是单元格,Excel 常用的操作方式有快捷菜单方式,工具按钮方式和宏10命令方式;另外,Excel 还有大量的函数,为计算和分析带来了极大的方便。第二节 税收总量指标分析税收总量指标是反映一定时间地点和条件下的税收总规模、总水平的统计指标。例如:2004 年我国税收总收入是 25718 亿元。一、税收总量指标的种类(一)按其反映的内容分类税收总量指标按其反映的内容不同可分为:税收总体单位总量和税收总体标志总量。税收总体单位总量是总体单位数的总和,它说明总体本身规模的大小。如,某县国税局
17、 2005 年末所辖一般纳税人为 2000 户。税收总体标志总量反映的是总体内各个单位某一数量标志值的总和。如,某县国税局 2005 年税收收入为 8 亿元。(二)按其反映的时间分类税收总量指标按其反映的时间状况不同可分为:时期指标和指点指标。时期指标反映总体在某一段时间内累计规模的总量。如上例中某县的税收收入。时点指标是反映总体在某一时刻状态上规模的总量指标。如上例中的一般纳税人户数。二、税收总量指标的分析要求对总量指标的分析描述应简洁、明了、突出其主要数量特征,给人以深刻印象。例:2004 年全国税收收入突破 25000 亿元,比 2000 年翻了一番,增收额突破 5000 亿元,超过了税
18、改初年 1994 年全年的收入总额,税收收入呈现出持续快速增长的良好态势。三、总量指标在 Excel 中的图表描述总量指标在 Excel 中的图表具体可描述为柱形图、条形图、折线图等。例:19942004 年我国税收入库数:11表 1-11、用折线图描述图 1-2入 库 数 (亿 元 )0.0010000.0020000.0030000.001 2 3 4 5 6 7 8 9 10 11年 份入 库数 (亿元 )2、用柱形图描述图 1-3入 库 数 (亿 元 )0.0010000.0020000.0030000.001 2 3 4 5 6 7 8 9 10 11年 份入 库 数(亿元 )第三节
19、 税收相对指标分析相对指标是两个有联系的指标对比的比值,反映事物的数量特征和数量关系。随着税收分析目的的不同,两个相互联系的指标数值对比,可以采取不同12的比较标准(即对比的基础) ,而对比所起的作用也有所不同,从而形成不同的相对指标。归纳起来有两类:一是同一总体内部之比,二是两个总体之间对比。一、属于同一总体内部之比的相对指标属于同一总体内部之比的相对指标有:计划完成程度相对指标、结构相对指标、比例相对指标、动态相对指标四种。(一)计划完成程度相对指标计划完成程度相对指标是某一段时间内同一总体的实际数和计划数对比的相对数。通常用百分数表示。其计算公式为:计划完成程度相对指标 100%计 划
20、数实 际 完 成 数它是税收分析工作中最常用的相对数,用来检查和分析计划执行的进度和均衡程度,反映计划执行的结果,并作为编制下期计划的参考。在计算时,要求分子、分母在指标的内容、范围、计算方法及时间长度等方面完全一样。计划完成程度相对指标只反映了计划执行的结果,在分析计划执行情况中,还要检查计划执行的进度和均衡程度,这就需要计算计划执行进度指标。计划执行进度指标用于检查计划执行过程中与时间进度的要求适应与否,一般说,时间过半,完成任务也应过半。计划执行进度指标可以逐日、逐旬、逐季地检查计划的执行情况,反映计划执行的均衡性。它是用计划期中某一段时期的实际累计完成数与计划期全期计划数对比。其计算公
21、式为:计划执行进度 100%计 划 期 全 期 计 划 数数某 段 时 间 实 际 累 计 完 成例 1:某局某月计划税收为 400 万元,实际完成 444 万元,则税收计划完成情况百分数是: 100%=111%40例 2:某局 1-9 月实际税收收入是 4000 万元,全年税收计划数是 7000 万元,则税收计划执行进度是: 100%=57.14%704(二)结构相对指标结构相对指标是利用分组法,将总体区分为不同性质的各部分,以部分数13值与总体数值对比求得的比重或比率来反映总体内部组成状况的综合指标。结构相对指标 100%总 体 总 量总 体 部 分 数 值例:某市国税局某月国内增值税税收
22、收入为 1269.1 万元,其中:市区的国内增值税税收收入为 785.2 万元,县局的国内增值税税收收入为 483.9 万元。则市区的国内增值税税收收入占全市的比重是: 100%=61.87%,县局的1.269785国内增值税税收收入占全市的比重是: 100%=38.13%。1.269483在 Excel 中的用饼图描述:图 1-4 国 内 增 值 税 785.2, 6%483.9, 8% 市 区 县 局(三)比例相对指标比例相对指标是反映总体中各组成部分之间数量联系程度和比例关系的综合指标。它是总体内部各不同部分的数值进行对比的比值。比例相对指标 总 体 中 另 一 部 分 数 值总 体 中
23、 某 一 部 分 数 值如上例,市区国内增值税税收收入是县局的: =1.57。9.483275(四)动态相对指标动态相对指标是同一总体中同一指标在不同时间上的数值之比。这个指标用于反映现象发展速度,并据以推测现象变化的趋势。一般把用来作为比较标准的时期称作“基期” ,而把和基期对比的时期称作“报告期” 。动态相对指标(发展速度) 100%基 期 同 一 指 标 数 值报 告 期 某 指 标 数 值本指标的应用将在第四节中详细介绍。14二、属于两个总体之间对比的相对指标属于两个总体之间对比的相对指标有:比较相对指标和强度相对指标。(一)比较相对指标在同一时间内同类事物由于所处的空间条件不同,发展
24、状况也不一样,要了解它们之间的差异程度,就需要将不同空间条件下的同类事物进行对比。比较相对指标是将两个性质相同的指标做静态对比得出的综合指标。比较相对指标 值另 一 条 件 下 同 类 指 标 数值某 条 件 下 的 某 类 指 标 数例:甲县 2004 年企业所得税税收收入为 7080 万元,乙县同年的企业所得税税收收入为 5124 万元。则,甲县的企业所得税税收收入是乙县的:=138.17%。5124708(二)强度相对指标是在同一地区或单位内,两个性质不同而有一定联系的总量指标对比得出的相对数,是用来分析不同事物之间的数量对比关系,表明现象的强度、密度和普及程度。强度相对指标 的 总 体
25、 总 量 指 标另 一 有 联 系 而 性 质 不 同某 一 总 体 总 量 指 标例:2004 年全国现价 GDP 为 136516 亿元,全国税收收入为 25718 亿元。则 2004 年全国每百元 GDP 产出的税收收入为: =18.84(元) 。这一指标,1365278也就是我们常所说宏观税负。第四节 税收指标动态分析税收总量指标分析和相对指标分析主要是根据同一时期的资料,从静态上对总体的数量特征进行分析的基本方法。但税收现象总是随着时间的推移不断地发展变化,因此还要进行动态分析。15所谓动态,就是现象在时间上的发展变化。要进行动态分析,首先要编制时间数列。将某一个税收统计指标在不同时
26、间上的各个数值,按时间先后顺序排列,就形成一个时间数列,也叫动态数列。一、常用的动态分析指标(一)水平动态指标 1、税收平均发展水平平均发展水平是时间数列中各个时期或时点上的发展水平的平均数,从动态上说明税收现象在某一段时间内发展的一般水平。由时期数列计算平均发展水平的公式:nanaain/321例:20002004 年某市税收入库数:表 1-2 年 份 2000 2001 2002 2003 2004税收入库数(亿元)71 87 103 119 15520002004 年平均税收入库数为:naan321= 5159087=107(亿元)由间隔相等的时点指标数列计算平均发展水平的公式:1221
27、naan例:20002004 年年末某市增值税一般纳税人户数 :表 1-3年 份(年末) 2000 2001 2002 2003 2004一般纳税人户数 1210 1345 1702 1978 226420002004 年本市增值税一般纳税人平均户数:16=1691(户)1526497803412a2、税收增长量 表示税收收入在一定时期内增长的绝对数量。由于选择的基期不同,又分为:逐期增长量:就是报告期税收收入与前一期税收收入的差额,说明税收收入逐期增加的数量。用符号表示: 1ta累计增长量:就是报告期税收收入与某一固定时期的差额,说明一定时期内总的增长量。用符号表示: 0n3、税收平均增长量
28、用来说明税收收入在较长时期内平均每期增长的绝对量。计算公式: nan/)(0(二)速度动态指标速度动态指标可以用来比较分析某种税收经济现象在不同发展阶段、或不同地区、部门之间的发展变化程度,是广泛应用的一种动态分析指标。1、发展速度是根据税收经济现象报告期发展水平与基期水平对比而得到的发展程度的相对指标,表明报告期水平已发展到基期水平的若干倍或百分之几。由于采用基期的不同,有定基发展速度和环比发展速度之分。(1)环比发展速度就是报告期水平和前一期水平之比,表明这种税收经济现象逐期的发展速度。如用符号表示,即环比发展速度: 1120,na(2)定基发展速度 就是报告期水平对某一固定时期水平(通常
29、为最初水平 )之比,表明该0a税收经济现象在较长时期内总的发展速度。如用符号表示,即17定基发展速度: 0201,an2、平均发展速度 某一税收经济现象由于所处的历史条件的不同,因而在各个时期中的发展速度也有所差异,为了进行动态分析,需要将现象在各个时期中的速度差异加以抽象,计算平均速度指标。平均速度指标包括平均发展速度和平均增减速度。平均发展速度是指各期环比发展速度的平均值,通常应用几何平均法计算:1201nnax0n3、平均增减速度平均增减速度是指各期环比增减速度的平均值。计算公式:平均增减速度平均发展速度100二、用 EXCEL 计算动态分析指标对于给定的一组数据(见下图) ,我们可以利
30、用 EXCEL 计算有关动态分析指标,即一定时期内的平均数。表 1-418(一)水平动态指标1、税收平均发展水平常用的计算方法有两种:(1)公式法直接写公式:=SUM(B4:B13)/10表 1-5(2)利用 AVERAGE 函数进行计算:=AVERAGE(B4:B13)表 1-6192、税收增长量(1)逐期增长量:对于给定的一组数据,在 E5 单元格中直接写公式=b5-b4,得出第一个增量,然后复制公式到以后各期即可。 (复制公式的做法:将 E5 单元格选中后,将鼠标放在右下角待出现”十”字后,下拖,可复制公式,属EXCEL 最基本操作,以后不再解释)。(2)累计增长量:计算给定的某一时期与
31、给定的基期的增长量,在单元格中直接写公式:=B13-B4,即可。(3)平均增长量:可直接在单元格中写公式:=(B13-B4)/9 即可。表 1-7(二)速度动态指标1、环比发展速度:对于给定的一组数据,在 c5 单元格中直接写公式20=B5/B4*100-100,然后复制公式到以后各期即可。2、定基发展速度:对于给定的一组数据,在 d5 单元格中直接写公式=B5/B$4*100-100,然后复制公式到以后各期即可。注意,要在 B4 的中间加上”$”符号,以保证以后各期均与基期相比。3、平均发展速度:通常用”power”函数进行计算,步骤如下:在 EXCEL提供的函数库中找到”power”函数,
32、双击打开,在”number”选项中填写计算期和基期的有关数据,如”B13/B4” ,在”power”选项中填定计算期到基期的年度,如本例为 9 年,则填写”1/9”,然后(*100-100)即可得出平均发展速度。表 1-8第二章 税收时间数列的趋势分析第一节 概述一、时间数列的概念、种类、编制原则(一)时间数列的概念将某一个税收统计指标在不同时间上的各个数值,按时间先后顺序排列,就形成一个时间数列,也叫动态数列。21(二)时间数列的种类时间数列按其排列的指标表现形式的不同,可分为三类:1、绝对数时间数列:是由一系列同类的税收总量指标数值按时间顺序排列的时间数列。又可分为时期数列和时点数列,若数
33、列中的每个指标数值都是税收时期总量指标,就称为时期数列;若数列中的每个指标数值都是税收时点总量指标,就称为时点数列。2、相对数时间数列:是由一系列同类的税收相对指标数值按时间顺序排列的时间数列。3、平均数时间数列:是由一系列同类的税收平均指标数值按时间顺序排列的时间数列。(三)编制原则1、注意时间单位(年、季、月等)的选择。2、注意数列前后指标的可比性(总体范围、指标涵义、计算方法、计量单位、经济内容等) 。二、时间数列变动因素的构成与分解(一)变动因素构成时间数列的变动,是多种因素共同影响综合作用的结果,各种因素的性质不同,其作用程度也不同。一般说来,税收指标的时间数列包含以下四种变动因素:
34、 1、长期趋势变动(T)长期趋势是指税收现象在一个相当长的时期内持续发展变化的总趋势。如持续上升、持续下降、基本持平。长期趋势变动是时间数列中最基本的规律性变动,是由于税收现象受到各个时期普遍的、持续的决定性的基本因素影响的结果。2、季节变动(S) 季节变动是指税收现象随着季节的更换而引起的按一定的时间间隔且周期重复的一种有规则的变动。季节变动是由于某些社会经济现象因季节变化、社22会风俗习惯以及某些制度规定等原因所引起的。3、循环变动(C)循环变动是指一种周期较长的、近乎规律性的由高到低,再由低到高周而复始的变动。循环变动是由于多种不同的原因引起的。4、不规则变动(I)不规则是指除了上述各种
35、变动以外,现象因临时的,偶然的因素而引起的随机变动,这种变动无规则可循,是无法预知的。例如地震、水灾、非典、政策的改变等所引起的变动。(二)变动因素的分解对于以上四种变动形式的结合,可以用两种假设来描述。即加法模型和乘法模型。1、加法模型(Y=T+S+C+I)加法模型变动因素的分解用减法。例:T=Y-(S+C+I)2、乘法模型(Y=TSCI)乘法模型变动因素的分解用除法。例:T=Y/(SCI)第二节 移动平均法一、移动平均法移动平均法是根据时间数列资料、逐项推移,依次计算包含一定项数的序时平均数,以反映长期趋势的方法。当时间数列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋
36、势时,可用移动平均法,消除这些因素的影响,对时间数列进行修匀,以便分析、预测数列的长期趋势。移动平均法有简单移动平均法和加权移动平均法两种形式。(一)简单移动平均法预测公式: nyynttttt 1211 式中: 是以第 t 期移动平均作为第 t+1 期的预测值, 为移动平均的项1ty n23数。(二)加权移动平均法在简单移动平均公式中,每期数据在平均中的作用是等同的。但是,每期数据所包含的信息量并不一样,近期数据包含着更多关于未来情况的信息。因此,应考虑各期数据的重要性,对近期数据给予较大的权重。预测公式: nfyfyffy nttttt 13211 式中: 是以第 t 期移动平均作为第 t
37、+1 期的预测值, 为移动平均的项1t数, 为 y 的权数。 选择的一般原则是:近期数据的权数大,远期数据的权ff数小。应用移动平均法对时间数列进行修匀时,要注意以下几点:(1)移动平均的项数 ,一般是根据资料的具体特点来选定的。如果是各年的季度或月份税n收资料,则可取 4 项或 12 项移动平均。这样处理可消除周期变动的影响,取得较好的修匀效果,确切反映现象发展的长期趋势。 (2)当 为奇数时,移动平n均数都能与各时期的数值对正,一次即得出相应的趋势值;当 为偶数时,计算的移动平均数都对正两个时期的中间,因此还要进行一次两项移动平均,得出能对正某个时期的趋势值。 (3)只有当原来数列的基本趋
38、势为直线形式时,应用移动平均法计算的一系列移动平均数才与该数列的基本趋势符合。如果原数列的基本趋势为非直线型的,则计算所得的一系列移动平均数与原数列有较大的差异,不能如实反映现象固有的发展趋势。二、用 EXCEL 计算移动平均数某地区 2000-2004 年分季度税收收入情况如下,要求分别用简单移动平均法和加权移动平均法分别预测 2005 年 1 季度税收收入。表 2-124(一)简单移动平均一是公式法:在 D6 单元格中写公式=AVERAGE(C2:C5)或=SUM(C2:C5)/4,得出第一个移动平均值,并复制公式到以后各期,可预测 2005 年 1 季度收入为376.8。表 2-2二是利
39、用 EXCEL 提供的分析工具:在 EXCEL”工具”下拉菜单中选择”分析工具” ,进一步选定”移动平均” ,在弹出的对话框中作以下选择:在输入区域填写已知的数据即$C$2:$C$21,在间隔中选择移动平均的项数即 4,在输出区域选择将移动平均数据存放的区域如$E$3,同时选中”图表输出”和”标准误差”,可得出表中预测结果。需要注意的是,EXCEL 分析工具将第一次移动平均的25结果放在了 E5 的位置,其他与公式分析结果相同。图 2-1(二)加权移动平均在 D6 单元格中写公式=C5*0.4+C4*0.3+C3*0.2+C2*0.1(越与预测期接近的数据所占权重越大,分别为 0.4、0.3、
40、0.2、0.1),得出第一个移动平均值,并复制公式到以后各期,可预测 2005 年 1 季度收入为 388.06。表 2-3通过对比简单移动平均和加权移动平均的图示可以看出,由于加权移动平均对近期数据给予较大的权重,因而在修匀时间序列时更与实际贴近一些。26第三节 指数平滑法指数平滑法是在移动平均法基础上发展起来的一种方法,实质上是一种特殊的加权移动平均法。它一般适用于时间序列长期趋势变动和水平变动事物的预测。指数平滑法是依据时间序列的有关数据和计算出来指数平滑值,确定市场预测结果的方法。指数平滑法包括一次指数平滑法、二次指数平滑法和多次(三次以上)指数平滑法,一次指数平滑法适用于水平型变动的
41、时间序列预测,二次指数平滑法适用于线性趋势型变动的时间序列的预测,多次指数平滑法适用于非线性趋势变动的时间序列预测。本节主要阐述一次指数平滑法。一、一次指数平滑法(一)一次指数平滑法预测模型: )1()1(tttt SxSx式中: 为一次指数平滑值,就是以第 t 期指数平滑值( )作为 t+1)(t 1(tS期预测值( ); 为平滑系数,且 0 1。Excel 称 的值为“阻尼因1tx子” 。(二)最佳平滑系数的选择在指数平滑法中,平滑系数的选择是很重要的,从上式可以看出, 的大小规定了在新预测值中新数据与原预测值所占的比重。 值愈大,新数据所占的比重就愈大,原预测值所占比重就愈小,反之亦然。
42、因此, 值既代表预测模型对时间数列数据变化的反应速度,同时又决定预测模型修匀误差的能力。最佳的平滑系数应使实际值和预测值之间的差最小,通常是预测误差的平方和的平方根(RMSPE)最小。值应根据时间数列的具体性质在 01 之间进行选择。27(三)初始值的确定用一次指数平滑法进行预测,除了考虑合适的 外,还要确定初始值 ,)1(0S初始值是由预测者估计或指定的。一般以最初几期的实际值的平均值作为初始值。二、用 EXCEL 进行指数平滑预测根据某市历年国税收入数据(见下表) ,若 0.7,要求在 EXCEL 中运用指数平滑法预测 2005 年国税收入。表 2-4具体步骤如下:第一步:在 EXCEL
43、“工具栏”中选择“数据分析”宏,并点击“指数平滑”过程,点击确定。图 2-2第二步,在指数平滑宏菜单的“输入区域”中输入“B2:B13” ,在阻尼(平28滑)系数输入 0.7。选择“输出区域” ,并选择输出“图表输出”和“标准差”输出(如图 3 所示) ,点击确定。图 2-3第三步,移动平均宏的计算结果如下图所示。图 2-4从上表可得,用指数平滑法预测的该市 2005 年国税收入为 69.1。由于一次指数平滑法适用于平稳型的时间序列,各观察值基本上在某个固定的水平上波动,而该市国税收入从观察值看明显属逐年增长的趋势序列,不宜使用指数平滑法进行预测。第四节 季节变动法季节变动是指由于自然条件和社
44、会条件的影响,税收现象在一年内随着季29节的转变而引起的周期性变动。进行季节变动的分析和预测,首先应分析判断该时间数列是否呈季节性变动。通常,可按三至五年的已知税收资料在 Excel 中绘制曲线图,以观察其在一年内有无周期性波动来做出判断;然后,将各种因素结合起来考虑,即考虑它是否还受趋势变动的影响、不规则变动的影响等。从而选用本节介绍的方法来进行分析、预测。常用的测定季节变动的方法有以下两类:一类是不考虑长期趋势的影响,采用按月(或按季)平均法;另一类则是考虑长期趋势的影响,采用移动平均法,借以剔除长期趋势的影响,所以也称为移动平均趋势剔除法。一、季节比率的测定方法(一)按月(或按季)平均法
45、 首先整理被研究现象若干年的月度资料或季度资料,编制成平行的时间数列,在此基础上,先要计算各年同期的平均数(如果是月度资料,计算各年同一月份的平均数;如果是季度资料,则计算各年同一季度的平均数) 。其次,计算各年总的月(或季)平均数。最后,将各年同月(或季)的平均数与总的月(或季)平均数对比,即得各月(或季)的季节比率。现以某地区 19962004 年商业增值税税收收入统计数据为例,说明季节比率的测定方法:1、分析判断该时间数列是否呈季节性变动。按 20022004 年三年的税收收入资料在 Excel 中绘制折线图,如图 1 所示,可见三年内呈明显的周期性波动。图 2-530050001000
46、01500020000250002002200320042002 1311081268238789119721121211251271222003 1671721131091241091391581401651411512004 1472301561381351531361681651831781731 2 3 4 5 6 7 8 9 10 11 122、将资料编制成平行的时间数列(如下表) ,分别计算九年的各月的平均数、总的月平均数和各月的季节比率。表 2-5 单位:万元月份 1996 1997 1998 1999 2000 2001 2002 2003 2004九年月平均季节比率()1 4
47、533 4896 4658 3317 5826 16788 13168 16705 147899408.89 96.562 3471 5067 7647 3361 9706 15751 10832 17240 2309310685.33109.653 7623 7735 5425 12739 5639 11983 12670 11379 1566910095.78103.604 5753 6980 5680 746610752 10100 8238 10910 138348857.00 90.895 4344 6460 7145 6081 7008 10983 8786 12457 135458534.33 87.586 5738 6255 7231 7733 1903 -346 9113 10949 153007097.33 72.837 6114 4937 2466 655816327 14930 9721 13905 136569846.00101.048 4959 6074 10051 7104 7454 13553 11251 15836 1684910347.89106.199 7341 8018 8047 9125 9333 10298 12197 14003 16514 10541 108.1