1、第一章 材料的性能及应用意义变形:材料在外力作用下产生形状与尺寸的变化。强度:材料在外力作用下对变形与断裂的抵抗能力。 (对塑性变形的抗力)比例极限(p)弹性极限(e)屈服点或屈服强度(s、0.2)抗拉强度(b)比强度:各种强度指标与材料密度之比。屈强比:材料屈服强度与抗拉强度之比。塑性:指材料在外力作用下产生塑性变形而不破坏的能力,即材料断裂前的塑性变形的能力。硬度:反映材料软硬程度的一种性能指标,表示材料表面局部区域内抵抗变形或破裂的能力。韧性:材料强度和塑性的综合表现。布氏硬度 HBW洛氏硬度 HR (优点:操作迅速简便,压痕较小,几乎不损伤工件表面,故而应用最广。)维氏硬度 HV疲劳断
2、裂特点:断裂时的应力远低于材料静载下的抗拉强度甚至屈服强度;断裂前无论是韧性材料还是塑性材料均无明显的塑性变形。疲劳过程的三个基本组成阶段:疲劳萌生、疲劳扩展、最后断裂第二章 材料的结构键:在固体状态下,原子聚集堆积在一起,其间距足够近,它们之间便产生了相互作用力,即为原子间的结合力或结合键。根据结合力的强弱,可把结合键分为两大类:强键(包括离子键、共价键、金属键)和弱键(即分子键) 。共价键晶体和离子键晶体结合最强,金属键晶体次之,分子键晶体最弱。晶体:原子在三维空间中有规则的周期性重复排列的物质。各向异性:晶体具有固定熔点且在不同方向上具有不同的性能。晶格:晶体中原子(或离子、分子)在空间
3、呈规则排列,规则排列的方式就称为晶体结构。结点:将构成晶体的实际质点抽象成纯粹的几何点。体心立方晶格:晶胞原子数 2面心立方晶格:晶胞原子数 4密排六方晶格:晶胞原子数 6晶体缺陷:原子的排列不可能像理想晶体那样规则完整,而是不可避免地或多或少地存在一些原子偏离规则排列的区域,这就是晶体缺陷。晶体缺陷按几何特征可分为点缺陷、线缺陷(位错)和面缺陷(如晶界、亚晶界)三类。点缺陷:空位、间隙原子、置换原子线缺陷特征:两个方向的尺寸很小,在另一个方向的尺寸相对很大。位错:晶体中有一列或若干列原子发生了有规律的错排现象。实际金属晶体中存在的位错等晶体缺陷,晶体的强度值降低了 2-3 个数量级。面缺陷:
4、晶界、亚晶界第三章 材料的凝固与结晶组织凝固:物质从液态转化为固态的过程。结晶:物质从液态转化为固态后,固态物质是晶体,这种凝固的过程就是结晶。过冷:金属的实际结晶温度低于理论结晶温度的现象。二者之差称为过冷度(T) ,T=Tm-Tn。过冷度越大,实际结晶温度越低。同一种金属,其纯度越高,则过冷度越大;冷却速度越快,则实际结晶温度越低,过冷度越大。结晶过程:金属的结晶过程是形核与长大的过程。形核方式:均质形核(自发形核) 、异质形核(非自发形核)细晶强化:用细化晶粒来提高材料强度的方法。 (晶粒越细,晶界越多,也越曲折,强化作用越显著。 )晶粒大小对金属性能的影响:细晶粒金属晶界多,晶界处晶格
5、扭曲畸变,提高了塑性变形的抗力,使其强度、硬度提高。细晶粒金属晶粒数目多,变形可均匀分布在许多晶粒上,使其塑性好。因此,在常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。细化铸锭和焊缝区的晶粒方法:控制过冷度(增加过冷度可提高 N/G 值,有利于细化晶粒)变质处理振动处理同素异构:某些金属元素和非金属元素在不同温度和压力下,具有不同类型的晶体结构。合金:合金是由两种或两种以上的金属元素、或金属与非金属元素组成的具有金属特性的物质。组元:组成合金的最基本的独立物质称为组元,组元可以是元素或稳定化合物。工业上广泛使用的碳钢和铸铁,就是由铁和碳两种组元组成的二元合金。固溶体:溶质原子溶入金属溶
6、剂中所组成的合金相称为固溶体。 (间隙固溶体、置换固溶体)固溶强化:由于外来原子(溶质原子)溶入基体中形成固溶体而使其强度、硬度升高的现象,此是金属强化的重要形式。金属化合物:正常价化合物电子化合物间隙相和间隙化合物二元合金相图:匀晶相图共晶相图典型三晶区组织:表层细晶区柱状晶区中心等轴晶区等轴晶:由于中心部位的温度大致均匀,每个晶粒的成长在各方向上也是接近一致的,故形成了等轴晶。冶金缺陷:缩孔疏松气泡裂纹偏析第四章 材料的变形断裂与强化机制单晶体塑性变形的主要方式:滑移和孪生(常温与低温下)冷塑性变形对金属组织结构的影响:显微组织的变化亚结构的细化变形织构残留应力变形织构:一是拉拔时形成的织
7、构,称为丝织构,其主要特征是各个晶粒的某一晶向大致与拉拔方向平行;二是轧制时形成的织构,称为板织构,其主要特征是各个晶粒的某一晶面与轧制平面平行,而某一晶相与轧制时的主变形方向平行。加工硬化(冷塑性变形对金属力学性能的影响):在冷塑性变形过程中,随着金属内部组织变化,其力学性能也将发生明显变化。随着变形程度的增加,金属的强度、硬度显著升高,而塑性、韧性显著下降的现象。产生加工硬化的原因与位错密度增大有关。加工硬化现象实际意义:它是一种非常重要的强化手段,可用来提高金属强度,特别是对那些无法热处理强化的合金尤其重要。加工硬化是某些工件或半成品能够拉伸或冷冲压加工成形的重要基础,有利于金属均匀变形
8、。加工硬化课提高金属零件在使用过程中的安全性。冷塑性变形后的金属加热时,随加热温度升高,会发生回复、再结晶和晶粒长大等过程。回复:指经冷塑性变形的金属材料加热时,在显微组织发生明显改变前(即再结晶晶粒形成前)所产生某些亚结构和性能的变化过程。再结晶:指冷变形的金属材料加热到足够高的温度时,通过新晶核的形成及长大,最终形成无应变的新晶粒组织的过程。冷塑性变形,即冷加工;热塑性变形,即热加工。热加工:在再结晶温度以上进行塑性变形,反之为冷加工。由于实际晶体中不可避免地存在着晶体缺陷,晶体材料的实际强度远低于理论预期值。固溶强化:由于溶质原子与溶剂金属原子大小不同,溶剂晶格发生畸变,增大了位错运动的
9、阻力,使金属的滑移变形变得困难,从而提高了合金的强度和硬度。细晶强化:提高强度的同时也改善韧性。沉淀强化(弥散强化):材料通过基体中分布有细小弥散的第二相质点而产生的强化。位错强化:运动位错之间发生交互作用而使其运动受阻,所造成的强化量与金属中位错密度的平方根成正比。按材料断裂前所产生的宏观塑性变形量大小分类:脆性断裂、韧性断裂按裂纹扩展路径分类:穿晶断裂(裂纹穿过晶体内部扩展的断裂) 、沿晶断裂(裂纹沿晶界扩展)第五章 铁碳合金相图及应用铁素体:碳在 Fe 中的间隙固溶体称为 铁素体,该合金相常简称为铁素体。奥氏体:碳在 Fe 中形成的间隙固溶体称为奥氏体。渗碳体:分子式 Fe3C,具有复杂
10、晶格的间隙化合物,用符号 Cm 表示。工业纯铁室温组织:铁素体+三次渗碳体(F+Fe3C)共析钢室温组织:珠光体(AFp+Fe3C )亚共析钢室温组织:铁素体+珠光体过共析钢室温组织:珠光体+二次渗碳体(P+Fe3C)亚共晶白口铸铁室温组织:珠光体+二次渗碳体+ 莱氏体共晶白口铸铁室温组织:莱氏体过共晶白口铸铁室温组织:一次渗碳体+莱氏体过共析钢中,碳含量 Wc 接近 1.0%时,其强度达最高值。共晶白口铸铁铸造性能最好。第六章 钢的热处理热处理:指将金属或合金在固态下进行加热、保温和冷却,以改变其整体或表面组织,从而获得所需性能的一种工艺。冷却方式:炉冷、空冷、油冷、水冷奥氏体:发生 P(F
11、+Fe3C ) A 的转变奥氏体化过程:奥氏体晶核的形成奥氏体的长大残留渗碳体的溶解奥氏体均匀化影响奥氏体形成的因素:加热温度加热速度钢的成分原始组织奥氏体晶粒的长大:加热转变过程中,新形成并刚好互相接触时的奥氏体晶粒,称为奥氏体起始晶粒,其大小称为起始晶粒度。奥氏体的起始晶粒一般都很细小,但随着加热温度的升高和保温时间的延长,其晶粒将不断长大,长大到钢开始冷却时的奥氏体晶粒称为实际晶粒,其大小称为实际晶粒度,奥氏体的实际晶粒度直接影响钢热处理后的组织与性能。奥氏体晶粒的大小控制:加热温度保温时间加热速度氧化:钢在高温作用下,在加热介质中 O2、CO2、H2O 等氧化性介质发生氧化反应,形成金
12、属氧化物的现象。脱碳:钢在加热和保温时,炉气中含有 O2、CO2、H2O、H2 等脱碳性气氛,钢表层中固溶的碳和这些介质在高温作用下发生氧化反应,使表层碳浓度降低,即产生脱碳。过热:加热温度过高或保温时间过长,得到粗大晶粒组织,称作过热。过烧:由于加热温度过高,使奥氏体晶界严重氧化,甚至发生了局部熔化,这种现象称为过烧。珠光体转变高温转变(A1550) 在固态下形核和长大的结晶过程层片珠光体的性能主要取决于层片间距。珠光体(P)索氏体(S)托氏体(T)贝氏体转变中温转变(550Ms) 半扩散转变上贝氏体呈羽毛状 下贝氏体呈黑色针片状马氏体转变低温转变(MsMf) 无扩散转变Wc0.30% 板条
13、马氏体Wc1.0% 片状马氏体Wc=0.30%1.0% 板条马氏体和片状马氏体的混合组织马氏体的性能取决于马氏体的碳含量与组织形态,随马氏体中碳含量的升高,塑性与韧性急剧下降。马氏体转变的特点:无扩散性转变速度极快转变的不完全性马氏体点的位置主要取决于奥氏体的成分。残留奥氏体:当奥氏体中的 Wc 大于 0.5%时,Mf 已低于室温,这时,奥氏体即使冷到室温也不能完全转变为马氏体,这部分被残留下来的奥氏体称为残留奥氏体。冷处理:生产中可将淬火工件冷至室温后,再随即放到 0以下温度的介质中冷却,以最大限度地消除残留奥氏体,达到提高硬度、耐磨性与尺寸稳定性的目的。过冷奥氏体的连续转变:V1 炉冷 珠
14、光体 V2 空冷 索氏体 V3 油冷 托氏体 V4 水冷 马氏体退火:将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却,以获得接近平衡态组织的热处理工艺。 (高碳)完全退火:将钢完全奥氏体化后,随之缓慢冷却,获得接近平衡状态组织的退火工艺。适用于亚共析钢成分的中碳钢及中碳合金钢的铸件、锻件、轧制件及焊接件。完全退火目的:细化组织,降低硬度,改善可加工性,去除内应力。等温退火:目的和加热过程与完全退火相同。适用于高碳钢、中碳合金钢、经渗碳处理后的低碳合金钢和某些高合金钢的大型铸、锻件及冲压件。球化退火:将工件加热到 Ac1(1020),保温后等温冷却或缓慢冷却,使钢中未溶碳化物球状化而进行
15、的热处理工艺。球化退火目的:降低硬度,提高塑性,改善可加工性,以及获得均匀的组织,改善热处理工艺性能,为以后的淬火做准备。球化退火主要适用于共析和过共析成分的碳钢和合金钢锻、轧件。均匀化退火:又称扩散退火,是为了减轻金属铸锭、铸件或铸坯的化学成分偏析和组织不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却,以达到化学成分和组织均匀化的退火工艺。去应力退火:去应力退火是为了去除由于塑型加工、焊接、热处理及机械加工等造成的及铸件内存在的残留应力而进行的退火。正火:将钢加热到 A3(对于亚共析钢)或 Acm(对于过共析钢)以上 3050,保温适当时间后,在静止的空气中冷却的热处理工艺。 (低碳)
16、正火的主要目的是调整锻件和铸钢件的硬度,细化晶粒,消除网状渗碳体并为淬火做好组织准备。正火主要应用于:改善低碳钢的切削加工性能中碳结构钢件的预备热处理普通结构零件的最终热处理消除过共析钢的网状碳化物用于某些碳钢、低合金钢的淬火返修件淬火:将钢件加热到 Ac3 或 Ac1 以上某一温度,保持一定时间后以适当速度冷却,获得马氏体或下贝氏体组织的热处理工艺。淬火后可以得到细小而均匀的马氏体。常用淬火介质:水 尺寸较小的碳钢零件 油 合金钢淬火方法:单介质淬火双介质淬火分级淬火等温淬火分级淬火:将工件奥氏体化后,随之浸入温度稍高或稍低于 Ms 点的液态介质中,保温适当时间,使钢件内外层都达到介质温度后
17、取出空冷,获得马氏体组织的淬火工艺。等温淬火:将工件奥氏体化后,随之快冷到贝氏体转变温度区(260400)等温足够长时间,使奥氏体转变为下贝氏体的淬火工艺。淬透性:钢在淬火后的淬硬层深度,它表征了钢在淬火时获得马氏体的能力。淬透性的影响因素(冷却速度必须大于临界速度 Vk): 合金元素碳的质量分数奥氏体化温度钢中未溶第二相淬硬性:指钢在理想条件下进行淬火硬化(即得到马氏体组织)所能达到的最高硬度的能力。淬硬性主要取决于马氏体中的碳含量,碳含量越高,淬火后硬度越高,合金元素的含量则对它无显著影响。回火:将淬硬后的钢重新加热到 Ac1 以下的某一温度,保温一定时间后冷却到室温的热处理工艺。回火的主
18、要目的:降低脆性、消除或降低残留应力赋予工件所要求的力学性能稳定工件尺寸低温回火(150250 ) 回火马氏体中温回火(350500 ) 回火托氏体高温回火(500650 ) 回火索氏体低温下长时间保温的热处理称为稳定化处理。回火脆性:第一类回火脆性 第二类回火脆性 (减少钢中杂质元素的含量,加入 Mo 等能抑制晶界偏聚的元素,中小型工件可通过回火后快速冷却来抑制)淬火冷却变形的原因:变形与开裂的根本原因是淬火时所形成的内应力所致。淬火冷却变形是淬火冷却过程中热应力与相变应力在零件形状、尺寸的反映。淬火后工件表面局部未被淬硬的区域称为软点。表面淬火:表面淬火是通过快速加热与立即淬火冷却相结合的
19、方法来实现的,即利用 快速加热使工件表面很快地加热到淬火温度,在不等热量充分传到心部时,即迅速冷却,使表层得到马氏体而被淬硬,而心部仍保持为未淬火状态的组织,即原来的塑性、韧性较好的退火、正火或调质状态的组织。 (目的:提高硬度)化学热处理基本过程:加热、分解、吸收、扩散常用的化学热处理:渗碳、渗氮、碳氮共渗、氮碳共渗与表面淬火相比,化学热处理的主要特点是:表层不仅有组织变化,而且有成分的变化故性能改变的幅度大。渗碳工件工艺路线:锻造正火机械加工渗碳淬火+低温回火精加工。渗碳工件经淬火+ 低温回火后的表面组织为针状回火马氏体+碳化物+少量残留奥氏体渗氮:指在一定温度下使活性氮原子渗入工件表面的
20、化学热处理工艺,也称氮化。目前应用较多的有气体渗氮和离子渗氮。渗氮零件工艺路线:锻造正火粗加工调质精加工去应力粗磨渗氮精磨或研磨。与渗碳相比,气体渗氮的特点:变形很小高硬度、高耐磨性疲劳极限高高的耐蚀性能生产周期长,成本高。钢的碳氮共渗:向钢的表面同时渗入碳和氮原子的过程,也称氰化处理。第七章 钢铁材料合金元素存在的形式主要有三种:固溶态、化合态和游离态。合金元素溶入奥氏体中从而提高钢的淬透性、溶入马氏体中从而提高耐回火性等间接作用对钢的性能影响程度,往往大于其固溶强化这种直接作用。 、游离态元素对钢的性能产生不利影响,故应尽量避免此种存在形式。合金元素对钢加热时奥氏体化的影响:绝大多数合金元
21、素(尤其是碳化物形成元素)对非奥氏体组织转变为奥氏体形核与长大、残余碳化物的溶解、奥氏体成分均匀化都有不同程度阻碍与延缓作用。因此大多数合金钢热处理时一般应有较高的加热温度和较长的保温时间,但对一些需要较多未溶碳化物的高碳合金工具钢,则不应该采用过高加热温度和过长的保温时间。合金元素对淬火钢回火过程的影响:提高钢的耐回火性产生二次硬化影响了高温回火脆性耐回火性:指淬火钢对回火时所发生的组织转变和硬度下降的抗力,绝大多数合金元素均有此作用。二次硬化:当钢中含有较多量中强或强碳化物形成元素 Cr、W、Mo、V 等,并在 450600温度范围内回火时,因组织析出了细小弥散分布的特殊合金碳化物(如W2
22、C、Mo2C、VC 等) ,这些碳化物硬度极高、热稳定性高且不易长大,此时,钢的硬度与强度不但不降低,反而会明显升高(甚至比淬火钢硬度还高) ,这就是“二次硬化”现象。不锈钢性能要求:优良的耐蚀性合适的力学性能良好的工艺性能不锈钢具有高耐蚀性的根本原因:提高基体电极电位基体表面形成钝化膜影响基体组织类型白口铸铁:当碳主要以渗碳体等化合物形式存在时,铸铁断口呈银白色。C、Si、P 促进石墨化 S 阻碍石墨化生产中调整 C、Si 含量是控制铸铁组织与性能的基本措施。碳既促进石墨化又影响石墨的数量、大小和分布。由于存在石墨,铸铁具有的特殊性能:因石墨能造成脆性短屑,铸铁的可加工性优异。铸铁的铸造性能良好。因石墨有良好的润滑作用,并能储存润滑油,故铸铁具有较好的减摩、耐磨性。因石墨对振动传递起削弱作用,铸铁具有良好的减振性能。大量石墨对基体组织的割裂作用,使铸铁对缺口不敏感,具有低的缺口敏感性。