1、-微分中值定理及定积分极限题型第十二专题讲座-积分中值定理及定积分极限题型 2009智 轩一、完整的积分中值定理包含下列全部内容1函数平均值 M2第一中值定理?1?如果函数在积分区间?a,b?上连续,则?a?b? ?2?如果函数f?x?, ?x?在积分区间则?a?b?f?b?a1baf?x?dxba?f?x?dx?f?b?a?。 (教材上的描述)?a,b?上连续,且当 a?x?b 时,?x? 不变号,则b-?baf?x?x?dx?f?x?dx。a3 第二中值定理( 超纲内容,仅仅作为理解用)x?b?1?若函数 f?x?, ?x?在积分区间?a,b? 上有界并可积,当且当 a?a?b?时,?x?
2、单调,则b?baf?x?x?dx?a?0?f?x?dx?b?0?f?x?dx。a?当且当 a?2?若函数 f?x?, ?x?在积分区间?a,b?上有界并可积,且为非负数,则x?b?x?单调递减时, (广义上) ,?a?b?-baf?x?x?dx?a?0?f?x?dx。a?当且当 a?3?若函数 f?x?, ?x?在积分区间?a,b?上有界并可积,且为非负数,则x?b时,?x?单调递增(广义上) ,?a?b?baf?x?x?dx?b?0?f?x?dx。?b二、与积分有关的求极限问题 【例 1】求极限 I1?limn?0解:1xn1?x0?x?1?0?x-nn1?x?x?0?n?10xn1?x?1
3、0xdx?n1n?1?I1?limn?10x1?x-?0?【例 2】求极限 I2?lim解: n?20sinxdx?2n 对任意给定的?0,且设?n?,则 n0?2sinxdx?2sin?n?xdx?sin?00?2?2?sin?2?1?lim?n?n?2?sin?2?0?N?0, 当 n?N 时, 有?2?sinn?2?0?20sinnxdx?2?I?lim?2sinn2n?0xdx?0n?p-【例 3】求极限 I3?limn?sinxnx ?p?0? 解:当 n?x?n?p,有 sinxn?psinxn?psinx x?1n?nx?pn?I3?limn?nx?01dx【例 4】求极限 I4
4、?lim?0?0?x2?1解:dIdx?4?lim?0?10?x2?1?lim1?0?1?2?1?arctan?lim1?|1?limarctan0?1?0?0?b?【例 5】求极限 I5?f?x?lim?0?ax,已知 f?x?C?0,1?, a?0, 解:应用第一中值定理 b?0。?a?b?I5?lim?baf-?x?x?f?aba?bdxx?f?lnbaba?0?baf?x?x?limf?ln?0?f?0?ln【例 6-已知 ff?x?x?0, ?和 xlim?A,求证 limx?1?xx0f?x?dx?A。证 明:分三种情况?1? A?0limfx?x?A?R?0, 当 x?R 时,f
5、f?x?RA2x?-x0?x?dx?0Rf?x?dx?Rf?x?dx?0xf?x?dx?RA2?R0f?x?dx?A2?x?R?lim?limx?x0fx0-?x?dx?f1x?x?x?dx?x?limf?x?1?A?2? A?0limfx?x?A?R?0, 当 x?R 时,ff?x?RA2x?-?x0?x?dx?0Rf?x?dx?Rf?x?dx?0xf?x?dx?RA2?R0f?x?dx?A2?x?R?lim?limx?x0f-x0?x?dx?f1x?x?x?dx?x?limf?x?1?A?3? A?0任选 B?0,并设 g?x?f?x?B?limg?x?lim?f?x?B?B?0x?x?lim?lim1x?xxx0x0g?x?dx?B ? ?1?的结论?1?x-f?x?dx?limg?x?dx?0x?x?x0x01x?Bdx?B?B?0?A?所以 xlim?1?xf?x?dx?limfx?x?A【例 7】宽型罗毕达法则举例 求 I6?xlim?1?xx0arctanxdx解:I6?lim1x?xx0arctanxdx?limarctanx?x?2