收藏 分享(赏)

考研高等数学公式(打印改进版).doc

上传人:weiwoduzun 文档编号:2672285 上传时间:2018-09-24 格式:DOC 页数:15 大小:259.50KB
下载 相关 举报
考研高等数学公式(打印改进版).doc_第1页
第1页 / 共15页
考研高等数学公式(打印改进版).doc_第2页
第2页 / 共15页
考研高等数学公式(打印改进版).doc_第3页
第3页 / 共15页
考研高等数学公式(打印改进版).doc_第4页
第4页 / 共15页
考研高等数学公式(打印改进版).doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、高等数学公式 高等数学公式高等数学公式 导数公式:基本积分表:三角函数的有理式积分: 22 21sincos1 1uuxduxxtg, , , 2(tan)secotan(s)ol(1)(log)lnxaxx 2221(arcsin)o(arct)1()xxxthc2222setancocoinsetasecolnln()xxdxdxCdCshcdxxaa22tlcsconiseltacso1rtnl1narcsixdxCxdxCaaxxdCxCaxxadxa axaxdaxIndInnn rcsin2l2)(21cossi2 222 22020高等数学公式 一些初等函数: 两个重要极限:三角

2、函数公式:和差化积公式: 积化和差公式:和差角公式: 万能公式、正切代换、其他公式:1sincosin()si()2cscs()os()1inc2sin2sincos2icoss2ini2xarthcxsechstxeshxxx1ln2)(l:2:2)双 曲 正 切双 曲 余 弦双 曲 正 弦 .59047182.)1(limsin0exx 222222tan1tansicos1tcoitan1antsecots|i|xxxx, , ,sin()sicosincotanta()1tco1c高等数学公式 倍角公式:半角公式: 1cos 1cossin cos2 2sincsinta tsi1si

3、1os 正弦定理: 余弦定理: RCcBbAasiini Cabc22反三角函数性质: riarosartnarot2xxxx 高阶导数公式莱布尼兹(Leibniz)公式: )()()2()1()(0)()( !)1()! nknnnnnkk uvuknvuvuCv 中值定理与导数应用: 拉 格 朗 日 中 值 定 理 。时 , 柯 西 中 值 定 理 就 是当柯 西 中 值 定 理 :拉 格 朗 日 中 值 定 理 :xFfabfab)(F)()( )曲率: .1;0.)1(limMsM:.,13202aKayds MsKtgydxs 的 圆 :半 径 为直 线 :点 的 曲 率 : 弧 长

4、 。:化 量 ;点 , 切 线 斜 率 的 倾 角 变点 到从平 均 曲 率 : 其 中弧 微 分 公 式 : 332sini4sincocotat122222sinicosco1incosittcanat高等数学公式 定积分的近似计算: ba nnnba nnba n yyyyxff yyxf )(4)(2)(3)( 21)()( 13124011010 抛 物 线 法 :梯 形 法 :矩 形 法 :定积分应用相关公式: babadtfxfykrmFApsW)(1),221均 方 根 :函 数 的 平 均 值 : 为 引 力 系 数引 力 :水 压 力 :功 :空间解析几何和向量代数: 。代

5、 表 平 行 六 面 体 的 体 积 为 锐 角 时 ,向 量 的 混 合 积 : 例 : 线 速 度 :两 向 量 之 间 的 夹 角 : 是 一 个 数 量 轴 的 夹 角 。与是向 量 在 轴 上 的 投 影 :点 的 距 离 :空 间 ,cos)( sin,cos,Pr)(Pr ,cos)()()(2 2222121 21212121 bacbaccba rwvkjic babababjjj uABABzyxMdzyxzyxzyx zyxzyx zyxzyxuu 高等数学公式 ( 马 鞍 面 )双 叶 双 曲 面 :单 叶 双 曲 面 :、 双 曲 面 : 同 号 )(、 抛 物 面

6、:、 椭 球 面 :二 次 曲 面 : 参 数 方 程 :其 中空 间 直 线 的 方 程 : 面 的 距 离 :平 面 外 任 意 一 点 到 该 平、 截 距 世 方 程 :、 一 般 方 程 : , 其 中、 点 法 式 :平 面 的 方 程 : 13,2211 ;,1302 ),(,)()()(12222 0000 2200 0000 czbyaxqpzyxcba ptznymxpnmstpznymxCBADzyxdczbyaxDCBA zyxMCBAnz多元函数微分法及应用:zyzx yxxyxyxFzyxF dFdddyvdvyudxvxzuxzfz tvtdttvu xffzdz

7、ududyxzd , , 隐 函 数 , , 隐 函 数隐 函 数 的 求 导 公 式 : 时 ,当 :多 元 复 合 函 数 的 求 导 法全 微 分 的 近 似 计 算 : 全 微 分 : 0),( )()(,),(),()(, ),(),(2高等数学公式 ),(1),(1,)(,)( ,)(0),(yuGFJyvvyGFJyuxxxx GFvuFvJvuyxF vu 隐 函 数 方 程 组 :微分法在几何上的应用: ),(),(),(3 0)(,(,2 )(),()(1,0),( ,0),( 0)()()( (,)(000 0000000 0000 zyxFzyxzyxF zyxFzyx

8、zyxzyxnMzyxF GFGFTGzyxFztytxt tyxzytzytx zzyxzy 、 过 此 点 的 法 线 方 程 : :、 过 此 点 的 切 平 面 方 程、 过 此 点 的 法 向 量 : , 则 :上 一 点曲 面 则 切 向 量若 空 间 曲 线 方 程 为 :处 的 法 平 面 方 程 :在 点 处 的 切 线 方 程 :在 点空 间 曲 线 方向导数与梯度: 上 的 投 影 。在是单 位 向 量 。 方 向 上 的, 为, 其 中:它 与 方 向 导 数 的 关 系 是 的 梯 度 :在 一 点函 数 的 转 角 。轴 到 方 向为其 中 的 方 向 导 数 为

9、:沿 任 一 方 向在 一 点函 数 lyxflf ljieyxflf jyfxyxpyxfzl yffllfz),(grad snco),(grad,),(),( sinco),(),( 多元函数的极值及其求法:高等数学公式 不 确 定时 值时 , 无 极为 极 小 值为 极 大 值时 ,则 : , 令 :设 ,0),( ),(,),(,),(0),(),(202 0000BACyxA CyxfByxfAffyxf xy重积分及其应用: DzDyDx zyxDyDx DyxDD adfaFayxdfFayxdfF FMzo IyI dxydyxzAyxfzrdrfdf232232232 22

10、22 )(,)(,)(, )0( ),(,),(,),(1),()sin,co(),( , , , 其 中 :的 引 力 :轴 上 质 点平 面 ) 对平 面 薄 片 ( 位 于 轴 对 于轴对 于平 面 薄 片 的 转 动 惯 量 : 平 面 薄 片 的 重 心 :的 面 积曲 面柱面坐标和球面坐标: dvyxIdvzxIdvzyI MMyxM drrFddrrFdyzf vrxzrfzF dzrFdxyzfryx zyx )()()( 1,1,1 sin),(sin),(),( siicosin),si,(),( ,),(,(,sinco 222 20),022 2, , 转 动 惯 量

11、: , 其 中 重 心 : , 球 面 坐 标 :其 中 : 柱 面 坐 标 :高等数学公式 曲线积分: )()()(),(),( ,)(, 22 tyxdtttfdsyxf tytxLfL 特 殊 情 况 : 则 : 的 参 数 方 程 为 :上 连 续 ,在设 长 的 曲 线 积 分 ) :第 一 类 曲 线 积 分 ( 对 弧。, 通 常 设 的 全 微 分 , 其 中 :才 是 二 元 函 数时 ,在 :二 元 函 数 的 全 微 分 求 积 注 意 方 向 相 反 !减 去 对 此 奇 点 的 积 分 , , 应。 注 意 奇 点 , 如, 且内 具 有 一 阶 连 续 偏 导 数在

12、,、 是 一 个 单 连 通 区 域 ;、 无 关 的 条 件 :平 面 上 曲 线 积 分 与 路 径 的 面 积 :时 , 得 到, 即 :当 格 林 公 式 :格 林 公 式 : 的 方 向 角 。上 积 分 起 止 点 处 切 向 量 分 别 为和, 其 中系 :两 类 曲 线 积 分 之 间 的 关 , 则 :的 参 数 方 程 为设标 的 曲 线 积 分 ) :第 二 类 曲 线 积 分 ( 对 坐0),(),(),( ),( )0,(),(),(21 212, )()( )cos(),),(),(),()(0),),0 yxdyxQyPyxu uQyPxQGyxPG ydxdxy

13、ADyPxQy QPQdyxdL dPttttPdyxQyPtx DLDLLLL 曲面积分:高等数学公式 dsRQPRdxyQzPdyxzdzxyQdyzPxzxRdxyzR dxyzRdzxyQdyP dfszxfzxyzy xyDDD )cosco(),(,),( , ),(),( ),(),( ),(,1,),( 22 系 :两 类 曲 面 积 分 之 间 的 关 号 。, 取 曲 面 的 右 侧 时 取 正 号 ;, 取 曲 面 的 前 侧 时 取 正 号 ;, 取 曲 面 的 上 侧 时 取 正 , 其 中 :对 坐 标 的 曲 面 积 分 :对 面 积 的 曲 面 积 分 :高斯公

14、式: dsAvsRQPdsAsnzRyQx dsdxyzdyvzyxPnn i )cocos( .,0iv,di )coscos()(成 :因 此 , 高 斯 公 式 又 可 写 ,通 量 : 则 为 消 失的 流 体 质 量 , 若即 : 单 位 体 积 内 所 产 生散 度 : 通 量 与 散 度 :高 斯 公 式 的 物 理 意 义 斯托克斯公式曲线积分与曲面积分的关系: dstARzQdyPxARQPzyx yPxQRzPyRzQPxdxyzdy RdzQyPxRPzQyR 的 环 流 量 :沿 有 向 闭 曲 线向 量 场旋 度 : , , 关 的 条 件 :空 间 曲 线 积 分

15、与 路 径 无上 式 左 端 又 可 写 成 : kjirot coscos)()()( 高等数学公式 常数项级数: 是 发 散 的调 和 级 数 :等 差 数 列 :等 比 数 列 : nqqnn13212)(112 级数审敛法: 散 。存 在 , 则 收 敛 ; 否 则 发、 定 义 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 :、 比 值 审 敛 法 : 时 , 不 确 定时 , 级 数 发 散时 , 级 数 收 敛, 则设 : 别 法 ) :根 植 审 敛 法 ( 柯 西 判、 正 项 级 数 的 审 敛 法 nnnnsusUulim;31li21l

16、im1211 。的 绝 对 值其 余 项, 那 么 级 数 收 敛 且 其 和如 果 交 错 级 数 满 足 莱 布 尼 兹 定 理 :的 审 敛 法或交 错 级 数1113243 ,0li )0,( nnn n urrusuu绝对收敛与条件收敛: 时 收 敛 时 发 散 级 数 : 收 敛 ; 级 数 : 收 敛 ;发 散 , 而调 和 级 数 : 为 条 件 收 敛 级 数 。收 敛 , 则 称发 散 , 而如 果 收 敛 级 数 ;肯 定 收 敛 , 且 称 为 绝 对收 敛 , 则如 果 为 任 意 实 数 ;, 其 中1)1(1)()2()1(232pnpnnuun 高等数学公式 幂

17、级数: 01)3(lim)3(111 1121032 RaaRRxxaxaxx nnnn 时 ,时 ,时 ,的 系 数 , 则是, 其 中求 收 敛 半 径 的 方 法 : 设 称 为 收 敛 半 径 。, 其 中时 不 定时 发 散时 收 敛, 使在数 轴 上 都 收 敛 , 则 必 存 收 敛 , 也 不 是 在 全, 如 果 它 不 是 仅 在 原 点 对 于 级 数 时 , 发 散时 , 收 敛 于 函数展开成幂级数: nnn nnxfxffxfx RffR xfxfxxf !)0(!2)0()(0)(0 lim,()!1 )(!)(!2)()10( 00)(2000时 即 为 麦 克

18、 劳 林 公 式 : 充 要 条 件 是 :可 以 展 开 成 泰 勒 级 数 的余 项 :函 数 展 开 成 泰 勒 级 数 :一些函数展开成幂级数: )()!12()!53sin )1(1)(1)( 2 xnxxx xnmmm 欧拉公式: 2sincosincoixiixiix exe 或三角级数: 。上 的 积 分 在任 意 两 个 不 同 项 的 乘 积正 交 性 : 。,其 中 , 0 ,cos,in2cos,incs,i1 )in()i()( 100 xxxtAbaAxbattf nnn高等数学公式 傅立叶级数: 是 偶 函 数 ,余 弦 级 数 : 是 奇 函 数 ,正 弦 级

19、数 : ( 相 减 )( 相 加 ) 其 中 , 周 期 nxaxfnxdfab bffnxdfbfanxbxfnn nnnnnn cos2)(2,10cos)(20 i3,i124316246142853)3,1(si)(12,0co)si(2)(000222210 周期为 的周期函数的傅立叶级数:2lllnlnnnndxlfblfa llblxxf )3,21(si)(1,0co)si()(10 其 中 , 周 期微分方程的相关概念:即 得 齐 次 方 程 通 解 。 ,代 替分 离 变 量 , 积 分 后 将, 则设 的 函 数 , 解 法 :, 即 写 成程 可 以 写 成齐 次 方

20、程 : 一 阶 微 分 方 称 为 隐 式 通 解 。 得 : 的 形 式 , 解 法 :为: 一 阶 微 分 方 程 可 以 化可 分 离 变 量 的 微 分 方 程 或 一 阶 微 分 方 程 : uxyudxudxuxdyxu xyyfyCxFGdxfg dxfgyQdyPyf )()(,)()()( )()(0,),( 高等数学公式 一阶线性微分方程: )1,0()(2 )0)(, )(1 )()(nyxQPdxy eCdxeQCxxyPdx dxPPd,、 贝 努 力 方 程 :时 , 为 非 齐 次 方 程 ,当 为 齐 次 方 程 ,时当、 一 阶 线 性 微 分 方 程 :全微

21、分方程: 通 解 。应 该 是 该 全 微 分 方 程 的 , 其 中 : 分 方 程 , 即 :中 左 端 是 某 函 数 的 全 微如 果 Cyxu yxQuyxPdyxPd),( ),(),(0),(,)(二阶微分方程: 时 为 非 齐 次时 为 齐 次, 0)()()(2 xfyxQdPxy二阶常系数齐次线性微分方程及其解法: 212,)(2 ,(*)0)(1,0(*)r yrqpqyp式 的 两 个 根、 求 出 的 系 数 ;式 中的 系 数 及 常 数 项 恰 好 是, 其 中、 写 出 特 征 方 程 :求 解 步 骤 : 为 常 数 ;, 其 中 式 的 通 解 :出的 不 同 情 况 , 按 下 表 写、 根 据 (*),321r的 形 式,1r(*)式的通解两个不相等实根 )04(2qp xrxrecy21两个相等实根 r1)(21一对共轭复根 )(2241pqpirir, , )sinco2xeyx二阶常系数非齐次线性微分方程:高等数学公式 型为 常 数 ;型 , 为 常 数, sin)(cos)()(,xPxexf qpfqyplm其他公式:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报