1、重大核科学工程重大核科学工程重大核科学工程中国实验快堆 3中国实验快堆(CEFR)我国快堆和第 4 代先进核能系统徐 钅 米 2000 年首先由美国提出、2001 年众多核能国家认可的第 4 代先进核能系统(简称“第 4 代” )共推荐了 6 种堆型,即钠冷快堆、气冷快堆、铅冷快堆、超临界水堆、超高温堆和熔盐堆。它们的技术基础不同。世界上钠冷快堆曾建造 18 座,从实验快堆、原型快堆、直到经济验证性快堆,已积累了 350 快堆年的运行经验,工程技术已近成熟;熔盐堆只建过实验堆;其它 4 种堆型从未建造,其中铅冷快堆仅于 20 世纪六七十年代建造过类似于铅冷的铅铋冷却潜艇用快堆十一二座,因冷却剂
2、工艺问题,运行并不成功。2001 年以来, “第 4 代”在两个世界性的技术合作组织 INPRO(反应堆与燃料循环创新国际计划)和 GIF(第代先进核能系统国际论坛)组织下,近 30 个核能国家参于合作开发,至今尚未有任何“第 4 代”堆型完整的设计,但已有对“第 4 代”比较明确的定性目标,即可持续性、经济性、安全性和可靠性及防核扩散和实体防卫。1)可持续性“第 4 代”的要求是:能提供清洁、可持续的核能,能为世界长期使用和对核燃料实现有效利用;应能处理好核废物,并使核废物量最小化,特别是减少核废物长期管理的负担,从而改进对公众和环境的保护。在各种反应堆堆型中,快中子反应堆是唯一能实现工程意
3、义上燃料增殖的堆型,且能嬗变长寿命核废物核素。我国选择的钠冷快堆采用合金燃料,有最高的燃料增殖能力,不仅能使我国核能可持续发展,且能满足我国核能快速增长的需求,比如,到 2050 年,可使我国核电发展到 240 GWe 或以上。在我国核能发展的战略研究中,准备用我国原型快堆规模的快堆,一址多堆、模块化建造焚烧堆,以焚烧长寿命次量锕系核素(MA)和嬗变长寿命裂变产物(LLFP) 。2)经济性“第 4 代”的要求是在整个寿期的投资上明显地优于其它能源系统,应在投资风险方面能与其它能源系统不相上下。我国快堆工程发展尚在实验快堆阶段,以后将逐步发展到原型快堆、经济验证性快堆阶段,并力争主要技术选择的一
4、致性,以此减小商用快堆的技术经济风险,并逐步达到优化和简化系统使快堆有好的经济性。实际上,目前已有快堆工程经验的国家正在建造和设计的快堆已有可与当前轻水堆竞争的可能性了。3)安全性和可靠性“第 4 代”应有更优良的安全性和可靠性,有非常低的堆芯损坏程度,应消除厂外应急的需要。我国钠冷快堆的设计指导思想是充分利用快堆固有安全性和尽量采用非能动安全的工程措施,如对中国实验快堆采用了非能动余热导出系统,对中国原型快堆和经济性验证快堆将会增设非能动停堆系统以应对其可能的正钠空泡效应,保证在任何设计事故下钠不沸腾,堆芯不熔化。计算结果指出,中国实验快堆的堆芯熔化概率已低到每堆年 4107 ,且设计事故甚
5、至超设计事故下均不需要厂外应急。4 中国原子能科学研究院年报 2006 4)防核扩散和实体防卫“第 4 代”应保证核武器材料不易被转换和偷盗,并设置为防恐更为严密的实体防卫。我国钠冷快堆选用铀-钚-锆作为中国原型快堆后续燃料和它以后的经济验证性快堆、商用快堆的燃料,在堆的现场完成后处理和元件制造,再进堆运行,免除了厂外运输,易于加强实体防卫;采用一址多堆,易于集中严密防卫,消除分治难于承受的投资负担。从上述可见,我国钠冷快堆的技术选择和目标与“第 4 代”的目标是一致的,而高增殖能力更切合我国需要。为实现这一目标,我国快堆采用分步发展,且参加 INPRO 和 GIF(GIF 政策委员会已接纳我
6、国成为成员国,尚待我国政府批准)的国际合作,与其它钠冷快堆国家共同研究,共享成果,稳妥地达到目标。GIF 合作和我国快堆及燃料循环的发展徐 钅 米 应第代先进核能系统国际论坛(GIF)政策委员会主席 Shane Johnson 先生的邀请,国家科技部组团赴美参加了 2006 年 7 月 1213 日在华盛顿召开的 GIF 政策委员会例会,并做了中国申请加入 GIF 合作的陈述报告,包括我国快堆技术报告,内容涉及我国快堆技术发展历史、战略研究、中国实验快堆(CEFR)现状、燃料循环考虑及快堆作为先进核能系统目标等。会后,政策委员会正式发来接受中国为正式成员国的函件,目前正等待我国政府正式批准。在
7、 GIF 10 个国家共同制定的第 4 代先进核能系统的技术规划框架中,确定了钠冷快堆的研究内容,包括:燃料和材料;反应堆系统;电站辅助系统;安全以及设计和评价。我国快堆的发展目标总体上是与第代先进核能系统的目标相一致的,并更能满足我国自身发展的需要。我们应坚持这一发展目标,全面参加 GIF 的上述合作研究,逐步走向安全、可靠、经济快堆的商用阶段。参与这一合作的有利条件是,我国将运行的 CEFR 是上述研究内容中燃料、材料研究的重要工具。已为 CEFR 收集和开发的 1 套专业齐全的设计计算软件,在这一条件下可参与快堆设计,安全分析和系统工况分析。以自己的硬、软件条件和智慧在合作中可作出贡献,
8、并共享成果,分享 GIF 各国快堆经验。建议并参加 GIF 各国均有兴趣的、将美国 ANL 合金燃料在反应堆现场高温干法后处理和燃料元件制造技术从 EBR-规模的经验发展到适用于原型快堆规模(600 MWe)设施的水平,设计包括设施的建造和运行,以验证这一技术的实用性。GIF 对钠冷快堆的远期目标是 2025 年进入实用阶段,早于我国对快堆期望推广时间。参加GIF 合作,在与 GIF 几乎一致的可持续性、经济性、安全性、可靠性、防核扩散和实体防卫的要求下在科研、技术发展和工程验证方面促进我国快堆发展,吸收合作国经验,加快我国快堆及其燃料循环的发展。我院参与 INPRO 项目的工作进展周培德重大
9、核科学工程中国实验快堆 5由国际原子能机构(IAEA )于 2000 年发起的反应堆与燃料循环创新国际计划(International Project on Innovative Nuclear Reactors and Fuel Cycles,简称 INPRO)已得到了 27 个成员国的支持,我国是首批加入的成员国。该计划目的在于号召核电技术的拥有者与使用者们团结,共同开发保证核安全、最小风险及尽可能不影响环境、更具竞争力的新型反应堆和燃料循环体系。INPRO 通过关注经济性、社会可接受性问题及 IAEA 能够发挥独特作用的领域,例如防扩散、核安全、废物管理和可持续性问题,并通过为用户提供帮
10、助来发挥作用。该计划目前分为阶段和阶段。阶段分为阶段A (20012003 年 6 月)和阶段B(从2003 年 6 月开始)两个子阶段。阶段B 分成第 1 和第 2 两个部分。目前,处于阶段B 第 2 部分的收尾时期,原计划 2006 年底结束,现推迟到 2007 年底。但在 2006 年年中已开始准备阶段的工作框架和条款。阶段A 的主要任务是选择基本原则、用户要求和准则,开发各种创新型核能系统(INS)的成套评估方法和导则,为核能发展的基础结构变更提供建议。阶段A 的主要成果是编写出版了技术报告 IAEA-TECDOC1362Guidance for the Evaluation of I
11、nnovative Nuclear Reactors and Fuel Cycles(创新型反应堆和燃料循环的评价指导) 。该报告提供了评价创新型核能系统的方法学。阶段B 的主要任务是用个案研究( Case Studies)检验方法学,并根据个案研究结果修改方法学。第 1 部分从 2003 年 6 月开始至 2004 年 12 月结束,期间通过国家和个人个案研究来确定和改进方法学。该部分工作的主要成果是编写了技术报告 IAEA-TECDOC-1434Methodology for the assessment of Innovative Nuclear Reactors and Fuel Cy
12、cles(创新型核反应堆和燃料循环的评估方法) 。IAEA 还出版了该报告的中文稿。阶段B 的第 2 部分(2005 年 1 月至今)的工作是利用最新的 INPRO 评估方法评价创新型核能系统,同时为方便进行 INS 评估编写用户手册。为此曾提出 11 项研究和评价工作。其中最主要的一项工作是基于快堆及其闭式燃料循环的创新型核能系统的联合评价研究(有俄罗斯、法国、印度、中国和韩国参加,后来日本、乌克兰和加拿大也加入联合研究) 。中国原子能科学研究院参加的就是该项研究。清华大学正在开展的高温气冷堆制氢评价研究也是 INPRO 计划的一项内容。阶段B 的第 2 部分的主要活动和目标包括:通过一种更
13、加量化的办法来持续改进成套方法;并定稿和发布用户手册,确定并尽可能开发基础模型、程序和技术;为可能在第 2 阶段开展的INS 开发工作确定可能的合作框架和研发方案;在互利协作的基础上促进与其他国家和国际先进核能系统倡议(例如第 4 代反应堆国际论坛(GIF) )的合作;确定国家、地区和全球在需求和资源之间及基础结构需求之间的平衡,建立 1 个数据库并进一步开展程序(例如 DESAE)的开发工作;在纳入成员国所考虑的战略的情况下,确定并模拟 INS 推广应用情景;审议作为各种 INS 组成部分的多边核燃料循环(MNFC)的技术和基础结构方案。中国原子能科学研究院从 2004 年底开始参与阶段B
14、第 2 部分的一项联合评价研究。目前已完成和正在继续的与联合研究有关的工作有下面几项:1)编写快堆和燃料循环研发的国家概貌;2)提供联合研究用的输入数据;3)初步建立了我国核电发展情景模型,并重点对铀资源需求、燃料循环技术路线进行了分析;4)参与联合研究的阶段进展报告的编制;5)正在进行 1 000 MWe 钠冷快堆及其闭式燃料循环系统的方案设计和个别子系统的评价研究。2006 年 10 月初,在联合研究项目中设定了创新型核能系统的 1 套共同特征参数,各成员国6 中国原子能科学研究院年报 2006 根据各自情况进行创新型核能系统的方案设计,再进行经济性、安全性、防扩散、基础结构等方面的评价。
15、采用 DESAE 程序对我国核能发展情景的初步分析 *周培德, 杨 勇根据 IAEA 大会决议,创新型核反应堆和燃料循环国际项目(INPRO)于 2000 年启动。我国是 INPRO 项目成员国之一,主要参与基于快堆的闭式燃料循环技术的联合评价研究。根据本国的核能发展规划或设想建立核能发展情景并进行评价是联合研究的一项主要内容。采用 DESAE1 程序(Dynamic of Energy System-Atomic Energy)建立一核能发展情景计算参数模型。由于程序本身的一些不足(主要是快堆模型参数部分) ,采用改进版本程序 DESAE2 新建立了核能发展情景计算参数模型。不同版本的 DE
16、SAE 程序都是 IAEA 提供的。对假想的核能发展情景进行分析的主要目的是研究不同情景对铀资源需求量的差异,核电装机容量发展规模限制因素、快堆的作用等。首先对 IAEA 提供的用于核能发展情景动态分析程序 DESAE 进行开发,根据我国的创新型核能系统的方案设置计算模型参数。DESEA 程序用于建立核能系统模型,给出投资、铀需求量、乏燃料的同位素质量、放射性等信息,为下一步对核能系统进行经济、环境、防核扩散等方面评价分析提供数据。DESAE 程序包括 7 种类型的反应堆模型, 4 种燃料循环模型。在每种反应堆类型的模型里面,定义了 38 个参数和一个备用参数(材料方面) 。在燃料循环模型中,
17、主要包括乏燃料后处理厂的一些信息数据。DESAE 程序的大部分输入参数需要通过反应堆中子学计算获得,以及从反应堆和燃料循环装置的设计参数中提取。对核电不同发展规模、只发展压水堆、压水堆和快堆匹配发展、采用 MOX 燃料或金属燃料等几种组合情景进行了初步分析,给出了许多图表,包括核电装机容量的发展曲线、铀资源的需求量、燃料的循环信息、增殖的核燃料及其同位素成分、MA 及裂变产物质量、经济方面参数等。从不同情景的分析结果看,快堆及其闭式燃料循环是影响核电增长趋势的一个重要因素,也是能否减少对铀资源需求量的决定性因素。对于我国的核能发展情景分析,目前还缺乏很多的数据,主要是燃料后处理以及工程造价等方
18、面的参数,今后需要收集补充。此外,在大型快堆的模型参数方面,希望今后结合中子学分析,提供更详细和接近设计值的参数。* 中国原子能科学研究院院长基金支持项目参与快堆科研开发总体规划编制的情况周培德我国核能发展的总体战略是热堆(压水堆)-快堆- 聚变堆。核裂变能的可持续发展依赖于铀资源的充分利用和核废物的安全处置,发展快堆技术是解决这两方面挑战的有效现实途径。我国在做好压水堆核电技术升级的同时,应制定快堆核能系统技术开发的整体发展规划,以实现压水重大核科学工程中国实验快堆 7堆-快堆匹配发展,逐步建立起核燃料闭式循环体系,既能充分利用铀资源,使我国核电持续稳定发展,又能焚烧长寿命放射性核素,解除核
19、废料危害环境的后顾之忧。因此,尽快制定出我国快堆核能系统技术开发的整体发展规划具有重大战略意义。快堆技术已作为我国高技术发展的前沿技术之一列入了国家中长期科学和技术发展规划纲要(20062020) 。在纲要中提出的目标是:研究并掌握快堆设计及核心技术,相关核燃料和结构材料技术,突破钠循环等关键技术,建成 65 MW 实验快堆,实现临界及并网发电。中国实验快堆(CEFR )计划于 2010 年实现试验性并网发电。纲要中关于快堆工程技术的发展目标只涉及到CEFR 的建造,没有指出长期和远期目标。当前,国际上提出了第 4 代核电站技术发展的先进堆型,其中有 3 种是快堆堆型。显然,在世界范围内已经认
20、同了快堆技术的发展前景。根据国际上主要发展快堆技术国家的发展计划和对未来核电发展前景的预测,快堆核电站作为第 4 代核电站的主要堆型之一将在 2035 年左右进入商业应用。为此,我国应及早明确快堆技术发展中长期和远期目标,编制快堆科研开发总体规划,以指导我国快堆技术的全面发展。为此,中国核工业集团公司在 2006 年组织有关单位编制了我国快堆科研开发总体规划。中国原子能科学研究院参与了该规划的编制。我国快堆科研开发总体规划共由 6 章组成,具体如下。1)现状和问题包括:(1)国外情况;(2)国内情况;(3)存在的主要问题。2)需求分析包括:(1)快堆可提高铀资源利用率;(2)快堆可处置高放废物
21、;(3)快堆具有潜在用途。3)技术发展路线和发展目标包括:(1)国际快堆技术发展路线;(2)我国快堆技术发展路线;(3)我国快堆技术发展目标;(4)主要实施途径。4)科研规划项目和研究内容包括:(1)快堆先进核能系统技术平台;(2)快堆设计和应用研究开发项目;(3) “十一五”快堆科研规划项目和研究内容。5)主要承担单位6)保障条件包括:(1)政策措施和建议;(2)人才队伍建设;(3)总经费需求。中国核工业集团公司组织专家对该规划进行了多次修改。该规划将上报国家有关部委,以加快推动我国快堆科研工作的开展。钠火消防系统杜海鸥中国实验快堆(CEFR)进钠过程中可能出现的最严重的火灾为钠火灾,为了避
22、免发生钠泄漏时对钠工艺间及操作人员造成严重危害,必须在进钠相关部位设置足够的钠火消防系统,并通过调试达到相应的功能。1 钠火消防系统进钠阶段 CEFR 所具备的钠火消防系统由钠火探测报警系统、固定式膨胀石墨灭火剂喷撒系统、事故排烟系统、漏钠接收抑制盘系统、移动式膨胀石墨灭火器及钠工艺间地面保护层结构等8 中国原子能科学研究院年报 2006 部分构成。钠火探测报警系统在钠工艺间发生钠泄漏及钠管道发生钠泄漏时能够及时发出钠火灾报警信号,提醒操作人员作出相应的响应,以便控制钠泄漏的途径,减少钠的泄漏量。同时启动其它钠火消防系统,抑制钠火灾的产生,减轻钠火可能造成的严重后果。固定式膨胀石墨灭火剂喷撒系
23、统在进钠阶段主要针对钠车出入的 135 房间,保证在钠车及其管道发生大泄漏时,不造成该工艺间建筑物发生严重损坏。通过调试试验证明,该系统启动后,能保证 135 房间内任何一处的灭火剂的厚度都能达到具有扑灭其一次钠火的能力。 事故排烟系统在调试过程中主要是对进钠阶段所涉及一、二回路钠工艺间的防火阀、密闭阀、水浴除尘器及风机等设备进行调试,保证当钠泄漏发生时,启动事故排烟系统能够避免钠气溶胶气体体积热膨胀造成的正压使钠气溶胶外逸和污染相邻房间;减缓由于火灾产生的瞬间气体压力对围护结构的冲击,保护厂房结构;同时对钠火产生的钠烟雾进行净化处理,将排放到大气的钠气溶胶控制在规定的限值以内。漏钠接收抑制盘
24、系统合理的设计和安装可以保证工作人员在进钠所涉及的钠工艺间行走自如,而当发生钠泄漏时,钠工艺间地面上设置的漏钠接收抑制盘能及时收集泄漏的钠,减小了火灾规模,实现有效保护钠工艺间安全重要设备及构筑物安全的功能。移动式膨胀石墨灭火器主要针对钠工艺间发生小型钠火时操作人员可以采用移动式膨胀石墨灭火器或推车式膨胀石墨灭火器对准火源喷撒膨胀石墨灭火剂,灭火剂能够有效地抑制火灾的进一步扩展,并迅速恢复着火工艺间内的能见度,有利于操作人员采取进一步防护措施,更有利于现场操作人员及时撤离。钠工艺间地面保护层结构属于被动钠火消防系统之一,属非能动设施,它的设计融合在构筑物的结构设计中。即在建造钠工艺间时,在钢筋
25、混凝土实心墙表面设置有钢覆面和绝热层结构,以防止泄漏钠和钠燃烧给混凝土结构带来直接或间接的损害。同时中国实验快堆在进钠前成立了碱金属义务消防队,并组织了 3 次碱金属火灾应急演习,让所有参加进钠的人员充分熟习进钠时可能遇到的紧急状况以及需采取的应急措施。2 结论在设计人员、调试人员、安装人员及进钠人员的共同努力下,调试了所有与进钠相关的钠火消防系统,并证明这些系统能够发挥其应具备的功能。当万一发生钠泄漏时,能够将钠火灾的危害降低到最低,将钠火灾造成的经济损失降低到最低,并有效保护操作人员的安全,为进钠工作的开展提供了安全保障。蒸汽发生器钠水反应的氢计测定洪顺章蒸汽发生器在运行过程中发生换热管的
26、泄漏是常见的事故。氢计是测量钠和覆盖气中氢杂质的在线测量仪表。在二回路中,为了监测蒸汽发生器热交换器管壁是否破损,用以避免其后更多的三回路中的水向二回路钠中泄漏而引发大的事故,采用氢计监测二回路钠和覆盖气中氢杂质含量能及早发现水从三回路向二回路的泄漏。1 钠流道面积和钠流速重大核科学工程中国实验快堆 9CEFR 蒸汽发生器中的蒸发器和过热器的钠流道面积是相同的。从蒸汽发生器的运行参数中得到蒸发器和过热器直径、钠的流量及换热管数目和尺寸,进而可算出钠流道面积为 0.232 8 m2,钠在蒸发器和过热器中的流速为 0.59 m/s。在正常工况下,钠在过热器内滞留时间为 6.95 s;在蒸发器内滞留
27、时间为 19.9 s。2 钠与水的反应当换热管发生破裂后,管内的水会进入二回路钠中,并发生下列化学反应:Na(液)H 2O(液)=NaOH 1/2H 2(气)Na(液)NaOH=Na 2O1/2H 2(气)Na1/2H 2=NaH当水的漏量较小时,水与钠反应后基本上生成 NaH 和 Na2O。假设这些反应产物在蒸汽发生器流动并混合均匀的话,那么可算得不同水漏量引起钠中氢的增量。 2HCMLQ其中,M H 为氢的相对原子质量;M H2O 为水的相对分子质量;L 为水的漏量;Q 为钠的流量。假设用水的漏量为 1 g/s 和 二回路钠的流量为 137.5 kg/s 代入上式中,则算得氢计测得钠中氢的
28、增量为 0.81 g /g 。在 CEFR 中,将氢的增量为 0.10 g/g定为小漏报警信号,由上述计算可得此时水的漏量为 0.12 g/s。为了从覆盖气中氢的含量得知蒸汽发生器水的漏量,可根据 Sievert 定律、钠中氢 CH 与气中氢 PH 之间的关系计算得: HCSP其中,C H 为钠中氢的浓度(g/g) ;S H 为 Sievert 常数;P H 为气中氢的浓度。Sievert 常数与温度的关系可表达为 lg SH=0.86122/T。其中,S H 为 Sievert 常数 (gg1 mmHg1/2 );T 为钠的绝对温度。SH 在 627 K 时的计算值为 4.63 gg1 mm
29、Hg1/2 ,可换算成 0.127 gg1 (L/L)1/2 。在钠中氢为 1 g/g、钠温为 627 K 时,覆盖气中氢浓度为 62 L/L。在 CEFR 满功率运行时,过热器的钠出口温度和蒸发器的钠入口温度最高为 460 ,蒸发器钠出口温度最高为 310 。根据上述计算方法可算得不同水泄漏情况下在氢计探头处测到的氢的增量(表 1) 。表 1 水漏量与蒸汽发生器内钠和气中氢浓度增量的关系水漏量/(gs 1 ) 钠温/ 钠中氢浓度增量/(gg 1 ) SH/(gg1 (L/L) 1/2) 气中氢浓度增量/ (LL 1 )310 0.081 0.122 0.440.1460 0.081 0.13
30、5 0.36310 0.81 0.122 441.0460 0.81 0.135 36310 4.05 0.122 1 1025.0460 4.05 0.135 887310 8.1 0.122 4 40810460 8.1 0.135 3 6003 结论不同泄漏速度对蒸汽发生器产生的损坏程度也不同。为此,将钠的泄漏速度分为微漏(0.1 10 中国原子能科学研究院年报 2006 g/s 以下) 、小漏(0.110 g /s)、中漏(10 g/s2 kg/s)和大漏(2 kg/s 以上) 。国产的测定钠中氢的扩散型氢计的检测灵敏度为 0.005 g/g,俄罗斯产的为 0.01 g /g;测定惰气
31、中氢的电化学氢计的检测灵敏度为 0.1 L/L。由表 1 可看出,氢计可用于蒸汽发生器微漏和小漏的监测。快堆非能动停堆装置的发展黄 晨近年来,国际上提出了一种改进反应堆安全性的新概念“非能动安全” ,即通过采用非能动安全措施提高反应堆的安全性和可靠性。第 4 代先进核电的一个重要标志就是具有非能动安全性。非能动安全性是指反应堆不需借助人为动作所能达到的自然安全性,主要包括两个概念。1)通过反应堆的结构优化设计,提高反应堆的固有安全性的措施。2)增加非能动安全系统。非能动安全系统是指在事故工况下利用物质的重力、流体的对流、扩散等自然原理面而不需专设动力源驱动的安全系统,以适应在应急情况下停堆和带
32、走堆芯余热。非能动安全系统包含事故瞬态下反应堆的非能动停堆和非能动余热排除等。以下所讨论的是快堆非能动安全系统中的重要组成部分非能动停堆装置。非能动停堆装置的设计原则为:在事故工况下,即使反应堆保护系统PPS不投入工作,也能在非能动停堆装置的作用下使反应堆停闭,且冷却剂的最高温度不超过限值。早在20世纪70年代,国际上已开展了快堆非能动停堆装置的研究工作。可实现非能动停堆的原理有很多种,各国发展的侧重点也有所不同。归纳起来,目前国际上进行研究的非能动停堆装置有以下几种。1)磁性材料居里点温度控制的非能动停堆装置SASS。主要的工作原理为:控制棒与驱动机构间用磁性物质连接,利用磁性材料具有居里点
33、温度的特点,即当温度升到一定程度时,磁物质的磁性下降,使控制棒脱离而下落。这种设计最典型的代表是日本在其商用快堆DFBR 设计中采用的自停堆系统 1。2)气体膨胀驱动装置GEM。在堆芯布置充有气体的套管,在正常工况时,套管的钠液面高度超过堆芯高度,起到将中子反射回堆芯的作用,当发生一回路失流事故时,钠液面下降使堆芯中子泄漏增加,从而引入负反应性。这种停堆系统是针对非保护失流事故ULOF,适用于小型堆芯,对于大型堆芯,不能提供足够的负反应性,需与其他非能动停堆装置联合使用(例如,在堆芯中同时设置SASS和GEM) 。日本和美国对这种装置进行了较多的研究。3)液体悬浮的非能动停堆装置。正常运行工况
34、下,利用冷却剂浮力使控制棒位于堆芯上部,事故工况下,冷却剂流量下降到设计限值时,控制棒重量超过冷却剂浮力,控制棒下落。这种停堆装置针对的也是非保护失流事故ULOF。这种停堆装置的代表是俄罗斯的液体悬浮非能动停堆装置PPS和 HRS2。4)控制棒热膨胀强化驱动机构。控制棒驱动机构采用热膨胀强化设计,驱动机构的关键材料采用具有特殊热效应的材料(例如,热膨胀系数远大于一般材料,或具有温度记忆性能等) ,当反应堆温度升高时,热效应材料性能发生变化,控制棒则可以一定程度的下插;当温度达到设定限值时,热效应材料的性能变化也达到设定限值,启动控制棒释放装置,控制棒依靠重力插入堆芯。俄罗斯的多种温度效应驱动非
35、能动停堆组件PPS-AD 2、日本的强化热膨胀驱动装置 ETEM1、德国为欧洲快堆EFR 设计的ATENa 3,均属于这一类。据报道,韩国将建造的原型快堆 KALIMER 采用 SASS 和 GEM 非能动停堆装置 4。2002 年,第 4 代核电国际论坛(GIF)第三技术工作组(TWG3)在 “第 4 代液态金属反应堆研究发展计划”重大核科学工程中国实验快堆 11中也提到了 SASS 和 GEM 这两种非能动停堆装置,并对 SASS 的研究建议了较详细的计划 5。从中可看出,目前 SASS 和 GEM 是快堆非能动停堆装置发展的关注点。采用非能动停堆系统以保证核设施的安全性是核能发展的方向,
36、也是快堆发展遵循的方向。国际上已明确提出第 3 代核电站应具有非能动安全系统。我国目前在这方面还未见系统的研究,中国要发展快堆技术,应尽快考虑快堆非能动停堆系统的发展。参考文献:1 OKADA K, TARUTANI K, SHIBATA Y, et al. The design of a backup reactor shutdown system of DFBR. Proceeding of a Technical Committee Meeting Held in Obninsk. Russian Federation, 1995: 131-125.2 BAGDSAROV Yu E, B
37、UKSHA Yu K, VOZNESENSKI R M, et al. Development of passive safety devices for sodium-cooled fast reactor. Proceeding of a Technical Committee Meeting Held in Obninsk. Russian Federation, 1995: 97-106.3 EDELMANN M, KUSSMAUL G, VATH W. Development of passive shut-down systems for the european fast rea
38、ctor efr. Proceeding of a technical committee meeting held in Obninsk. Russian Federation, 1995: 69-79.4 HAHN D, MIN B J, KIM Y I, et al. Safety features and core performance of KALIMER, XA9643099.5 Nuclear energy research advisory committee and the generation international forum, generation roadmap
39、 R&D scope report for liquid-metal-cooled reactor systems. 2002-12, GIF-005-00.核级钠顺利充入 CEFR 回路系统马振权2006 年,对于 CEFR 工程来说是一段比较困难的时间,但就在这样的气氛中,我们以系统进钠调试为契机,开展了多个工艺系统以及辅助系统的调试工作,全体调试人员在整个过程中表现出良好的集体主义精神,提前 2.5 个月完成年度钠进厂任务。在 2006 年初,进钠调试面临以下重重困难。1)调试环境恶劣。调试区域的土建施工、房间涂漆、安装施工、设备加工厂施工等交叉作业矛盾突出,调试人员不得不克服焊接的污染
40、、电锯的噪音、飘扬的粉尘、冰冻的温度、人员的拥挤等种种困难进行系统调试。2)调试时间紧迫。一是调试计划要求所有工种的工作均要向前赶,所有调试作业向前赶;二是钠厂已成功生产出核级钠,进钠调试迫在眉睫。3)钠车加热系统的改造。几经商讨,虽面临可能增加经费的风险,但最终决定改造钠车加热系统,加装电加热棒元件。4)钠车改造工期紧张。设计、采购、加工、调试各个环节都必须在最短的时间内完成。5)油加热系统控制柜需改造。由钠厂订货的控制柜有几个尚未完成加工,加上钠车电加热改造,必须重新设计、加工控制柜,要求在极短的时间完成。6)二回路钠充排系统房间接钠盘未安装。这是进钠必要安全条件。7)进钠相关工艺间孔洞封
41、堵必须在进钠之前完成。8)进钠相关通风系统控制箱、柜全部要临时加工临时控制箱柜。调试人员面对这些困难,在短时间内完成了系统调试和部分技术改造。调试办与建造部充分合作尽可能压缩施工工期,并对施工进行监控。对于技术改造和设计加工制造,设计人员在短时间内绘出白图甚至是草图,并协同供应部进行采购加工,调试、采购人员共同督促进度。如,油加热系统控制柜设计、电加热元件棒和法兰盖设计均在一周内完成白图设计,在半个月内完成元12 中国原子能科学研究院年报 2006 器件采购和控制柜加工组装。仪控电调试中发现的许多问题全在短时间内解决。工程管理部门与校办工厂、实验工厂等密切配合,进入现场丈量、加工、焊接、安装接
42、钠盘,大大加快了进度。经周密安排,通过全体调试运行人员共同努力,以及各部门的通力合作,在 2006 年 2 月 26日实现了首次核级钠进厂,并在 2006 年 10 月 14 日完成第 14 车核级钠进厂,系统总共进钠247.66 t,标志着提前 2.5 个月完成 2006 年度进钠节点目标。CEFR 换料系统在台架上的综合验证试验及其进展王明政CEFR 换料系统基本功能是把从新组件工艺运输系统接收过来的新组件转运至堆芯指定的栅格位置,把指定的乏堆芯组件转运至堆内指定的贮存位置或乏组件工艺运输系统。由于 CEFR 的冷却剂是化学性质非常活泼的金属钠,这直接导致了 CEFR 换料系统的复杂性、特
43、殊性和重要性。换料系统由堆内换料系统和堆外换料系统组成。堆内换料系统由大小旋塞、换料机、装料提升机、卸料提升机和控制棒导管提升机构等组成,通过双旋塞和直动型换料机的组合运动,进行堆内组件的转运和完成钠下的换料操作。堆外换料系统由新组件装载机、转运清洗室、转运室转运机、转换桶、清洗室转运机、3 台气闸和堆顶密封塞及其传动装置等组成,通过转运室转运机-气闸- 转换桶- 气闸 -清洗室转运机- 气闸的组合运动,完成堆外的换料操作。在换料监控系统的控制下,堆内外换料系统通过 20 余个运动组合来完成组件的换料任务。整个换料操作是在 250 液态钠或 0.005 MPa 氩气中进行。这样,对系统的安全性
44、和可靠性要求很高。系统中的换料机、装料提升机、卸料提升机由俄罗斯进口,但其控制系统由中方设计制造,转运室转运机和清洗室转运机的机械部分和控制部分由国内两厂家设计制造,系统的整套控制的设计制造厂家也没有承接如此规模控制系统的设计和制造经验。这些不确定因素和系统的复杂性很可能影响系统的调试进度,进而直接影响到工程的总体进度。因此,有必要在换料系统设备安装之前在试验台架上进行设备及系统的综合验证。试验关注的重点在于:1)确定试验的规模,在能达到目的的同时,尽可能减小台架的规模,以节省工程投资;2)给俄供设备配备的二次变换器的适用性;3)系统操作的时序、逻辑以及联锁的合理性和完整性;4)组件历史记录的
45、可靠性;5)对控制棒组件的处理是否保证足够的安全;6)控制系统自诊断功能的开放性。目前,已完成台架的设计建造、在台架上组装和调试文件的编制、主要设备的单机机电联调试验,处理了换料机和装卸料提升机的电机问题、内部清洁度问题及密封问题,完善了转运机传感器配置,处理了转运机传动轴卡死问题,解决了机械位置指示和电气位置指示不一致的问题,完善了控制系统的程序,进一步细化了系统的工艺要求。预计在 2007 年上半年完成系统的联调试验。通过在台架上的综合验证试验,将达到如下目的:1)验证系统工艺要求的完整性和正确性;2)验证换料监控系统的可靠性及与工艺要求的符合性;3)检验俄供换料机、装料提升机和卸料提升机
46、的组装工艺和储运后设备的性能;重大核科学工程中国实验快堆 134)验证中方设计制造的换料机单机控制系统与设备的匹配性;5)验证中方设计制造的装料提升机和卸料提升机的单机控制系统与设备的匹配性;6)验证转运机与其控制系统的符合性。通过换料系统在台架上的综合验证试验,将有力保证 CEFR 工程安装和调试的进度。CEFR“专用工具”研制及其进展王明政CEFR 的冷却剂为化学性质非常活泼的金属钠,这使得快堆一回路涉钠设备和部件的装拆及物理启动需要系列大型成套装置,以防止污染冷却剂钠及避免可能引起的钠火和沾污。这一系列的成套装置,习惯上称为 CEFR“专用工具” ,具体包括:1)装卸料提升机本体装拆装置
47、;2)装卸料提升机吊桶装拆置;3)装卸料提升机导轨对中装置;4)燃料组件流量计装拆专用装置;5)一回路泵装拆专用装置;6)换料机装拆专用装置;7)中间热交换器装拆专用装置;8)一回路泵与泵支承密封焊缝切割专用装置;9)中间热交换器与其支承密封焊缝切割专用装置;10)独立热交换器装拆专用装置;11)旋塞人孔塞内塞装拆专用装置;12)独立热交换器与其支承密封焊切割专用装置;13)旋塞人孔塞装拆专用装置;14)充排钠保护塞的装拆专用装置;15)中子源组件组装专用设备;16)实验组件探测片支架取放专用装置;17)控制棒驱动机构装拆专用装置;18)501 大厅综合试验台架。上述“专用工具”应能保证在拆装
48、指定设备的过程中满足如下安全要求:1)装拆过程中隔离堆内覆盖气体与外部空气;2)被拆设备表面的钠不与空气接触;3)操作人员有足够的屏蔽;4)能将被拆设备安全取出并运至清洗井;5)能将待安装设备安全安装到指定的位置和方位。CEFR“专用工具 ”数量多、工艺复杂,无可借鉴的成熟设计,因此,设计难度大,初步预算额度达数千万元,如按正常的设计、采购、安装调试分工,在快堆工程概算异常紧张的现实情况下不可能控制在给定概算额度内,因此,探索一种新的由设计部门全面负责设计、设计验证、采购和安装调试的研制模式,以降低“专用工具”的投资,尽可能地保证工程的进度,降低调试风险。14 中国原子能科学研究院年报 2006 “专用工具”研制的难度在于:1)由于 CEFR 堆本体采用了一体化的池式结构,堆顶布置非常紧凑,这给“专用工具”的布置、操作和方案选择带来了极大的困难;2)平衡设备操作的安全性、可靠性和总体