收藏 分享(赏)

基于神经网络和决策树分类器的工艺参数优化研究.doc

上传人:dreamzhangning 文档编号:2261667 上传时间:2018-09-08 格式:DOC 页数:10 大小:64.50KB
下载 相关 举报
基于神经网络和决策树分类器的工艺参数优化研究.doc_第1页
第1页 / 共10页
基于神经网络和决策树分类器的工艺参数优化研究.doc_第2页
第2页 / 共10页
基于神经网络和决策树分类器的工艺参数优化研究.doc_第3页
第3页 / 共10页
基于神经网络和决策树分类器的工艺参数优化研究.doc_第4页
第4页 / 共10页
基于神经网络和决策树分类器的工艺参数优化研究.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、基于神经网络和决策树分类器的工艺参数优化研究摘 要: 提出了基于神经网络和决策树分类器的机械加工工艺参数寻优方法,根据已有的样本训练数据建立分类和神经网络模型,针对要求的加工目标,通过对分类规则的提取,生成预测数据集,结合建立的神经网络模型,迅速准确的预测出对应的加工工艺参数。关键词:神经网络分类器 决策树 工艺参数 分类规则1. 引 言在机械加工中,加工参数的选择对加工生产率和经济效益具有重要的影响,而加工参数一般是有经验的机械师的操作记录,这些记录再编纂成机械加工手册。但手册中的数据仅仅适用于特定的机加工条件,对于略有不同的机加工条件就可能不适用。而在通常加工系统中,加工参数的选择主要依靠

2、加工手册、工人的经验等来确定,因此正确性难以保证。同时,现代工业生产中的计算机在加工过程中采集大量的数据,这些数据及其关系人工一般是很难理解、辨认和优化的,特别对一个新的加工工艺,没有参考的经验和手册,只有不断积累的数据,这时要迅速的建立优化的加工参数,按照传统的技术和方法,难度是较大的。本文针对这种问题,提出了基于决策树分类器和神经网络的加工参数寻优的新方法。2. 基本原理与概念2.1 分类分类要解决的问题是为一个事件或对象归类,在已有数据的基础上学会一个分类函数或构造出一个分类模型。分类的一般性描述如下:给定数据库 Dt1,t2,tn ,元组 tiD,类的集合 CC1,Cm ,分类问题定义

3、为从数据库到类集合的映射 f:DC,即数据库中的元组 ti 分配到某个类Cj 中,有 Cj ti | f(ti) = Cj,1in,且 tiD构造决策树分类器,需要有一个训练样本数据集作为输入。训练集(Training set) 由一组记录或元组构成,每个记录是一个由有关字段值组成的特征向量,这些字段称做属性(Attribute ) ,用于分类的属性称为标签(Label) ,标签属性即训练集的类别标记。一个具体的样本的形式可以表示为(sv1,v2, , vn;c ) , 其中 vi 表示字段值,c 表示类别。标签属性的类型必须是离散的,且标签属性的可能值的数目越少越好。决策树分类器在确定分类节

4、点时,采用信息论中信息熵理论来选择节点,信息熵为信息论中用于描述每个消息的信息量以及信源的平均不确定性,决策树分类器中用其作为特征判别能力的度量,以其下降的速度作为测试属性的标准,其概念如下所述:设 S 是具有 s 个样本的集合,假定决策属性是类标号属性,具有 m个不同的值,定义了不同的类别 Ci(i=1,2,m) 。假设 si 是类别 Ci 中的样本数,样本分类所需的信息量由下式给出: 121log()miiIp( s,.s) =-其中 pi 是任意样本属于 Ci 的概率,并用 si/s 估计。设属性 A 取 v个不同的值a1,a2 , ,av。利用属性 A 可以将集合 S 划分为 v个子集

5、S1,S2, Sv,其中 Sj 包含了 S 集合中属性 A 取 aj 值的数据样本。若属性 A 被选为测试属性(用于对当前样本集进行划分) ,设 sij 为子集 Sj 中属于 Ci 类别的样本数。那么利用属性 A 划分当前样本集合所需要的信息熵可以计算如下: 1212.() (.)vjjmjjjmjjssEAIsE(A)的计算结果越小,即表示属性 A 划分子集的结果越“纯”越好。2.2 神经网络人工神经网络(ANN ,Artificial Neural Networks)是近年来发展起来的十分热门的交叉学科。神经网络是模拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络

6、的特点,通过简化、归纳,提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身的结构来表达输入和输出的关联知识。神经网络方法中可分为前向神经网络(BP 算法等 )、自组织神经网络(自组织特征映射、竞争学习等)等。神经网络通过学习分析数据中的模式来构造模型, 它由 “神经元”的互连或按层次组织的节点构成。通常神经模型由三个层次组成: 输入、中间层和输出。每一神经元求得输入值, 再计算总输入值 , 由过滤机制 (例如阀值) 比较总输入, 然后确定自己的输出值。3. 优化算法本文基于决策树规则和神经网络构建的加工参数优化算法流程如下:开始输入样本生成决策树分类建立神经

7、网络模提取预测规则结束生成预测数据3.1 生成决策树规则首先建立分类模型。设数据样本集为 S,其所有属性列为(v1,v2 ,,vn; c) ,其中 c 表示加工的目标或要求,其值一般是连续型的,从其取值的意义无法形成具有分类功能的类别,并且决策树分类器要求类别属性必须是离散型,故需对其进行泛化处理。本文采用自然分割法对类别属性进行泛化。v1vn 对应着加工参数,它们的取值也以连续型居多,如车床的进给量等。决策树对连续型属性的处理是将其分成两个大区间,并不利于进行深入的分析,所以在建立分类模型之前,对连续型的属性也要进行泛化。对样本集泛化预处理完成后,可按照决策树的算法进行建模。在形成的分类模型

8、里,每个分类中的属性顺序是按照各自对分类的所起的重要性来排列的,即在一条分类规则里,属性是按照对这条分类规则的不确定性影响的大小顺序排布,这个特性直接影响到后续利用分类器进行预测加工参数的属性选择。如类别 c1 的一种划分为v2=v2i&v1=v1i&v3=v3i,则表示当 v2 取值 v2i,v1 取值 v1i,v3 取值 v3i 的记录属于类别 c1,在这条规则里,属性的重要程度的顺序为 v2v1v3。3.2 建立神经网络模型标准反向传播算法(BP,Back Propagation)存在自身的限制和不足,主要表现在其训练过程的不确定上,会出现训练时间长、训练瘫痪和陷入局部极小值等现象。采用

9、附加动量法修正网络权值,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响,如同一个低通滤波器,使网络忽略微小变化,滑过局部极小值;对一些复杂问题,BP 网络需要较长的训练时间,这主要是因为训练速率太小,可通过自适应学习率加以改进,即检查权值的修正值是否真正降低了误差函数,降低则说明学习速率小了,可增加一个量,如果过调,则应减小学习速率。所以本文介绍的方法采用附加动量法结合自适应学习率来建立神经网络模型3.2 工艺参数寻优方法建立模型后,按如下步骤进行参数寻优:1) 确定新的加工要求或目标所属分类模型中离散化的类别属性的类别,再由决策树提取出所有此类别的规则,形成一个预测规则集T。

10、2) 决策树分类器建立时,是基于信息熵理论来确定选择属性 vi,故预测规则集的每条规则 Ti 中,每个属性是按照重要性进行排序的。提取离散化的连续型属性,将各属性在当前规则的取值区间内,进行细化,并按照组合的方式得到属于规则 Ti 的数据集 STi。3) 重复第 2 步直到每项都完成了数据集的生成,最终形成预测数据集 ST,设定误差精度,将数据集 ST 的每个元组数据置入神经网络模型,进行预测计算,生成 CTi,即属于类别属性的连续型值,对结果集 CT 进行分析,在误差范围内的 CTi 对应的元组即为可能的加工参数方案。若上述预测数据集 ST 不足以达到误差限的要求,则可以调整细化程度,生成更

11、加精确的预测数据集,当然这是以网络运算时间为代价的。此外还可以将生成的 CT 与对应的元组组合成新的样本集,按照前述的分类模型构造方法构造出一个更精确的分类模型,再由此模型重复上述步骤,直到预测出满足误差要求的新的 CTi,从而得到所需求的优化的加工参数组合。4. 磨削实验验证磨削通常为零件的最后精加工工序,零件的表面粗糙度是反映零件表面上微观几何形状误差的一个重要指标。表面粗糙度直接影响机械和仪器的使用寿命和使用性能。由于表面粗糙度的测量必须在磨削过程结束后进行,故不能及时发现加工中在表面粗糙度上出现的问题,易造成时间、财力、人力上的浪费,测得的结果也大大滞后于当前状况。本文通过上述算法建立

12、粗糙度与磨削过程状态参数之间关系的模型,对表面粗糙度进行预测辨识,实现参数优化,从而达到预定的粗糙度。本文的磨削实验中,测量的状态参数分别为:工件转速nw(r/m)、纵向进给速度 fa(mm/r)、磨削深度 ap(mm)下的表面粗糙度R(m)。部分样本数据如表 1:表 1 样本数据工件转速nw(r/m)纵向进给速度fa(mm/r)磨削深度ap(mm)表面粗糙度R(m)125 6 0.01 0.39125 9.6 0.02 0.49125 13.6 0.03 0.52125 17.6 0.01 0.61170 6 0.02 0.46170 9.6 0.03 0.51170 13.6 0.02 0

13、.54170 17.6 0.03 0.69200 9.6 0.01 0.49200 13.6 0.02 0.55200 17.6 0.01 0.69200 9.6 0.02 0.85加工目标是对工艺参数进行优化设定后,使磨削后的表面粗糙度值为 0.47,误差限+0.002。类别属性列 R 离散化为取值区间:(0.3,0.5);(0.5,0.7);(0.7,0.9); 工艺参数属性列 fa 离散化为取值区间:(0,10);(10,20);(20,30)。首先,建立决策树分类模型,提取出规则:1) if(fa =(0,10 & ap = 0.01|0.02) then R=(0.3,0.5)2)

14、if(fa =(0,10 & ap = 0.03) then R=(0.5,0.7)3) if(fa =(10,20) then R=(0.5,0.7)4) if(fa =(20,30 & ap = 0.01) then R=(0.5,0.7)5) if(fa =(20,30) & ap = 0.02|0.03)then R=(0.7,0.9)0.47 落入区间(0.3,0.5),由以上的分类规则得出预测规则集 T 为规则1,将规则集中的每项细化后构造出预测数据集 ST。然后,按照下列网络结构训练神经网络:表面粗糙度工件转速进给速度磨削深度图 2:神经网络模型得出网络结构后,将预测数据集 ST

15、 带入网络进行计算,得出预测结果:表 2 预测结果nw Fa ap R170.000000 8.000000 0.020000 0.470919200.000000 7.000000 0.020000 0.470157125.000000 10.000000 0.010000 0.470470从评估数据集中找到对应的表面粗糙度为 0.47 的记录如下:表 3 测试样本数据nw Fa ap R200 6 0.02 0.47125 9.6 0.01 0.47上述两条实际测量的记录被预测结果以很高的准确度覆盖,同时预测的结果还能够找到其他满足工艺要求所需要的参数组合。5. 结论本文对机械加工中的工艺

16、参数选择寻优方法进行了研究,在训练样本数据的基础上,构建分类和神经网络模型。利用分类模型提取出规则,生成预测数据集并结合神经网络模型,对加工参数进行优化预测。通过磨削表面粗糙度的实验,本文提出的基于决策树分类器和神经网络的加工参数优化方法,实现了预测出指定加工目标的加工参数优化组合,证明此方法在确定加工要求的情况下,能够预测出优化的加工参数组合。在实际加工中,能够提高生产效率、降低成本以及提高加工精度。参考文献1 DEDUTH H, BEATLE M.Neural network toolbox for use with MATLAB M. Natick , MA , USA : The Ma

17、th Works,Inc.,2001.2 Kim E,Kim W,Lee Y.Combination of multiple classifiers for the customers purchase behavior prediction J.Decision Support Systems,2003 ,34(2):167-175.3 Han J W,Kamber M. Datamining:concepts and techniques M.SanFrancisco:Morgan Kaufmann,2000.4 Bose I,Mahapatra R K. Business datamin

18、inga machine learning perspective J. Information & Management,2001, 39(3):211-225.5 朱明 . 数据挖掘 M. 中国科学技术大学出版社. 2002Research on the optimization of process parameters based on Decision Tree Classifier and Neural NetworksAbstractThe paper introduces a kind of optimizining method of mechanical process p

19、arameters based on Decision Tree Classifier and Neural Networks. Training data with the sample, the model of the classifier and Neural Networks can be built. To satisfy the machining request, using these two models to deal with the data set, proper process parameters can be forecaste.Keywords: Neural Networks,Decision Tree,Classifier,process parameters ,classific rules

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报