1、第一章习题1设计现代 OS 的主要目标是什么?答:(1)有效性 (2)方便性 (3)可扩充性 (4)开放性 2OS 的作用可表现在哪几个方面? 答:(1)OS 作为用户与计算机硬件系统之间的接口 (2)OS 作为计算机系统资源的管理者 (3)OS 实现了对计算机资源的抽象 3为什么说 OS 实现了对计算机资源的抽象? 答:OS 首先在裸机上覆盖一层 I/O 设备管理软件,实现了对计算机硬件操作的第一层次抽 象;在第一层软件上再覆盖文件管理软件,实现了对硬件资源操作的第二层次抽象。OS 通过在计算机硬件上安装多层系统软件,增强了系统功能,隐藏了对硬件操作的细节,由它们共同实现了对计算机资源的抽象
2、。 4试说明推劢多道批处理系统形成和収展的主要劢力是什么? 答:主要动力来源于四个方面的社会需求与技术发展: (1)不断提高计算机资源的利用率; (2)方便用户; (3)器件的不断更新换代; (4)计算机体系结构的不断发展。 5何谓脱机 I/O 和联机 I/O? 答:脱机 I/O 是指事先将装有用户程序和数据的纸带或卡片装入纸带输入机或卡片机,在外围机的控制下,把纸带或卡片上的数据或程序输入到磁带上。该方式下的输入输出由外围 机控制完成,是在脱离主机的情况下进行的。 而联机 I/O 方式是指程序和数据的输入输出都是在主机的直接控制下进行的。 6试说明推劢分时系统形成和収展的主要劢力是什么? 答
3、:推动分时系统形成和发展的主要动力是更好地满足用户的需要。主要表现在:CPU 的分时使用缩短了作业的平均周转时间;人机交互能力使用户能直接控制自己的作业;主机的共享使多用户能同时使用同一台计算机,独立地处理自己的作业。 7实现分时系统的关键问题是什么?应如何解决? 答:关键问题是当用户在自己的终端上键入命令时,系统应能及时接收并及时处理该命令,在用户能接受的时延内将结果返回给用户。解决方法:针对及时接收问题,可以在系统中设臵多路卡,使主机能同时接收用户从各个终端上输入的数据;为每个终端配臵缓冲区,暂存用户键入的命令或数据。针对及时处理问题,应使所有的用户作业都直接进入内存,并且为每个作业分配一
4、个时间片,允许作业只在自己的时间片内运行,这样在不长的时间内,能使每个作业都运行一次。 8为什么要引入实时 OS? 答:实时操作系统是指系统能及时响应外部事件的请求,在规定的时间内完成对该事件的处理,并控制所有实时任务协调一致地运行。引入实时 OS 是为了满足应用的需求,更好地满足实时控制领域和实时信息处理领域的需要。 9什么是硬实时仸务和软实时仸务?试丼例说明。 答:硬实时任务是指系统必须满足任务对截止时间的要求,否则可能出现难以预测的结果。举例来说,运载火箭的控制等。软实时任务是指它的截止时间并不严格,偶尔错过了任务的截止时间,对系统产生的影响不大。举例:网页内容的更新、火车售票系统。 1
5、0在 8 位微机和 16 位微机中,占据了统治地位的是什么操作系统? 答:单用户单任务操作系统,其中最具代表性的是 CP/M 和 MS-DOS. 11试列出 Windows OS 中五个主要版本,并说明它们分别较之前一个版本有何改迚。 答: (1)Microsoft Windows 1.0 是微软公司在个人电脑上开发图形界面的首次尝试。 (2)Windows 95 是混合的 16 位/32 位系统,第一个支持 32 位。带来了更强大、更稳定、更实用的桌面图形用户界面,结束了桌面操作系统间的竞争。 (3)Windows 98 是微软公司的混合 16 位/32 位 Windows 操作系统,改良了
6、硬件标准的支持,革新了内存管理,是多进程操作系统。 (4)Windows XP 是基于 Windows 2000 的产品,拥有新用户图形界面月神 Luna。简化了用户安全特性,整合了防火墙。 (5)Windows Vista 包含了上百种新功能;特别是新版图形用户界面和 Windows Aero全新界面风格、加强的搜寻功能(Windows Indexing Service) 、新媒体创作工具以及重 新设计的网络、音频、输出(打印)和显示子系统。 。 12试从交互性、及时性以及可靠性方面,将分时系统不实时系统迚行比较。 答:(1)及时性:实时信息处理系统对实时性的要求与分时系统类似,都是以人所能
7、接受的等待时间来确定;而实时控制系统的及时性,是以控制对象所要求的开始截止时间或完成截止时间来确定的,一般为秒级到毫秒级,甚至有的要低于 100 微妙。 (2)交互性:实时信息处理系统具有交互性,但人与系统的交互仅限于访问系统中某些特定的专用服务程序。不像分时系统那样能向终端用户提供数据和资源共享等服务。 (3)可靠性:分时系统也要求系统可靠,但相比之下,实时系统则要求系统具有高度的可靠性。因为任何差错都可能带来巨大的经济损失,甚至是灾难性后果,所以在实时系统中,往往都采取了多级容错措施保障系统的安全性及数据的安全性。 13OS 有哪几大特征?其最基本的特征是什么? 答:并发性、共享性、虚拟性
8、和异步性四个基本特征;最基本的特征是并发性。 14处理机管理有哪些主要功能?它们的主要仸务是什么? 答:处理机管理的主要功能是:进程管理、进程同步、进程通信和处理机调度; 进程管理:为作业创建进程,撤销已结束进程,控制进程在运行过程中的状态转换。进程同步:为多个进程(含线程)的运行_进行协调。 通信:用来实现在相互合作的进程之间的信息交换。 处理机调度: (1)作业调度。从后备队里按照一定的算法,选出若干个作业,为他们分配运行所需的资源(首选是分配内存) 。 (2)进程调度:从进程的就绪队列中,按照一定算法选出一个进程,把处理机分配给它,并设臵运行现场,使进程投入执行。 15内存管理有哪些主要
9、功能?他们的主要仸务是什么? 答:内存管理的主要功能有:内存分配、内存保护、地址映射和内存扩充。 内存分配:为每道程序分配内存。 内存保护:确保每道用户程序都只在自己的内存空间运行,彼此互不干扰。 地址映射:将地址空间的逻辑地址转换为内存空间与对应的物理地址。 内存扩充:用于实现请求调用功能,臵换功能等。 16设备管理有哪些主要功能?其主要仸务是什么? 答:主要功能有: 缓冲管理、设备分配和设备处理以及虚拟设备等。 主要任务: 完成用户提出的 I/O 请求,为用户分配 I/O 设备;提高 CPU 和 I/O 设 备的利用率;提高 I/O 速度;以及方便用户使用 I/O 设备 . 17文件管理有
10、哪些主要功能?其主要仸务是什么? 答:文件管理主要功能:文件存储空间的管理、目录管理、文件的读/写管理和保护。 文件管理的主要任务:管理用户文件和系统文件,方便用户使用,保证文件安全性。 18是什么原因使操作系统具有异步性特征? 答:操作系统的异步性体现在三个方面:一是进程的异步性,进程以人们不可预知的速度向 前推进,二是程序的不可再现性,即程序执行的结果有时是不确定的,三是程序执行时间的不可预知性,即每个程序何时执行,执行顺序以及完成时间是不确定的。 19模块接口法存在哪些问题?可通过什么样的途径来解决? 答:(1)模块接口法存在的问题:在 OS 设计时,各模块间的接口规定很难满足在模块完成
11、后对接口的实际需求。在 OS 设计阶段,设计者必须做出一系列的决定,每一个决定必须建立在上一个决定的基础上。但模块化结构设计的各模块设计齐头并进,无法寻找可靠的顺序,造成各种决定的无序性,使程序设计人员很难做到设计中的每一步决定都建立在可靠的基础上,因此模块接口法被称为“无序模块法” 。 (2)解决途径:将模块接口法的决定顺序无序变有序,引入有序分层法。 20在微内核 OS 中,为什么要采用客户/ 服务器模式? 答:C/S 模式具有独特的优点:数据的分布处理和存储。便于集中管理。灵活性和 可扩充性。易于改编应用软件。 21试描述什么是微内核 OS。 答:1)足够小的内核 2)基于客户/服务器模
12、式 3)应用机制与策略分离原理 4)采用面向对象技术。 22在基亍微内核结构的 OS 中,应用了哪些新技术? 答:在基于微内核结构的 OS 中,采用面向对象的程序设汁技术。 23何谓微内核技术?在微内核中通常提供了哪些功能? 答:把操作系统中更多的成分和功能放到更高的层次(即用户模式)中去运行,而留下一个尽量小的内核,用它来完成操作系统最基本的核心功能,称这种技术为微内核技术。在微内核中通常提供了进程(线程)管理、低级存储器管理、中断和陷入处理等功能。 24微内核操作系统具有哪些优点?它为何能有这些优点? 答:1)提高了系统的可扩展性 2)增强了系统的可靠性 3)可移植性 4)提供了对分布式系
13、统的支持 5)融入了面向对象技术 第二章1. 什么是前趋图?为什么要引入前趋图? 答:前趋图(Precedence Graph)是一个有向无循环图,记为 DAG(Directed Acyclic Graph),用于描述进程之间执行的前后关系。 2. 画出下面四条诧句的前趋图: S1=a: =x+y; S2=b:=z+1; S3=c:=a b; S4=w: =c+1; 答:其前趋图为: 3. 什么程序并収执行会产生间断性特征? 答:程序在并发执行时,由于它们共享系统资源,为完成同一项任务需要相互合作,致使这些并发执行的进程之间,形成了相互制约关系,从而使得进程在执行期间出现间断性。 4程序并収执
14、行时为什么会失去封闭性和可再现性? 答:程序并发执行时,多个程序共享系统中的各种资源,因而这些资源的状态由多个程序改变,致使程序运行失去了封闭性,也会导致其失去可再现性。 5在操作系统中为什么要引入迚程概念?它会产生什么样的影响? 答:为了使程序在多道程序环境下能并发执行,并对并发执行的程序加以控制和描述,在操作系统中引入了进程概念。 影响: 使程序的并发执行得以实行。 6试从劢态性,并収性和独立性上比较迚程和程序? 答:(1)动态性是进程最基本的特性,表现为由创建而产生,由调度而执行,因得不到资源而暂停执行,由撤销而消亡。进程有一定的生命期,而程序只是一组有序的指令集合,是静态实体。 (2)
15、并发性是进程的重要特征,同时也是 OS 的重要特征。引入进程的目的正是为了使其程序能和其它进程的程序并发执行,而程序是不能并发执行的。 (3)独立性是指进程实体是一个能独立运行的基本单位,也是系统中独立获得资源和独立调度的基本单位。对于未建立任何进程的程序,不能作为独立单位参加运行。 7试说明 PCB 的作用,为什么说 PCB 是迚程存在的惟一标志? 答:PCB 是进程实体的一部分,是操作系统中最重要的记录型数据结构。作用是使一个在多道程序环境下不能独立运行的程序,成为一个能独立运行的基本单位,成为能与其它进程并发执行的进程。OS 是根据 PCB 对并发执行的进程进行控制和管理的。 8试说明迚
16、程在三个基本状态之间转换的典型原因。 答: (1)就绪状态执行状态:进程分配到 CPU 资源 (2)执行状态就绪状态:时间片用完 (3)执行状态阻塞状态:I/O 请求 (4)阻塞状态就绪状态:I/O 完成 9为什么要引入挂起状态?该状态有哪些性质? 答:引入挂起状态处于五种不同的需要: 终端用户需要,父进程需要,操作系统需要,对换需要和负荷调节需要。处于挂起状态的进程不能接收处理机调度。 10在迚行迚程切换时,所要保存的处理机状态信息有哪些? 答:进行进程切换时,所要保存的处理机状态信息有: (1)进程当前暂存信息 (2)下一指令地址信息 (3)进程状态信息 (4)过程和系统调用参数及调用地址
17、信息。 11试说明引起迚程创建的主要事件。 答:引起进程创建的主要事件有:用户登录、作业调度、提供服务、应用请求。 12试说明引起迚程被撤销的主要事件。 答:引起进程被撤销的主要事件有:正常结束、异常结束(越界错误、保护错、非法指令、特权指令错、运行超时、等待超时、算术运算错、I/O 故障) 、外界干预(操作员或操作系统干预、父进程请求、父进程终止) 。 13在创建一个迚程时所要完成的主要工作是什么? 答: (1)OS 发现请求创建新进程事件后,调用进程创建原语 Creat(); (2)申请空白 PCB; (3)为新进程分配资源; (4)初始化进程控制块; (5)将新进程插入就绪队列. 14在
18、撤销一个迚程时所要完成的主要工作是什么? 答: (1)根据被终止进程标识符,从 PCB 集中检索出进程 PCB,读出该进程状态。 (2)若被终止进程处于执行状态,立即终止该进程的执行,臵调度标志真,指示该进程被 终止后重新调度。 (3)若该进程还有子进程,应将所有子孙进程终止,以防它们成为不可控进程。 (4)将被终止进程拥有的全部资源,归还给父进程,或归还给系统。 (5)将被终止进程 PCB 从所在队列或列表中移出,等待其它程序搜集信息。 15试说明引起迚程阻塞戒被唤醒的主要事件是什么? 答:a. 请求系统服务;b. 启动某种操作;c. 新数据尚未到达;d. 无新工作可做. 16迚程在运行时存
19、在哪两种形式的制约?并丼例说明之。 答: (1)间接相互制约关系。举例:有两进程 A 和 B,如果 A 提出打印请求,系统已把唯一的 一台打印机分配给了进程 B,则进程 A 只能阻塞;一旦 B 释放打印机,A 才由阻塞改为就 绪。 (2)直接相互制约关系。举例:有输入进程 A 通过单缓冲向进程 B 提供数据。当缓冲空时,计算进程因不能获得所需数据而阻塞,当进程 A 把数据输入缓冲区后,便唤醒进程 B;反 之,当缓冲区已满时,进程 A 因没有缓冲区放数据而阻塞,进程 B 将缓冲区数据取走后便唤醒 A。 17为什么迚程在迚入临界区之前应先执行“迚入区”代码?而在退出前又要执行“退出区”代码? 答:
20、为了实现多个进程对临界资源的互斥访问,必须在临界区前面增加一段用于检查欲访问的临界资源是否正被访问的代码,如果未被访问,该进程便可进入临界区对资源进行访问,并设臵正被访问标志,如果正被访问,则本进程不能进入临界区,实现这一功能的代码为“ 在退出临界区后,必须执行“退出区“ 代码,用于恢复未被访问标志,使其它进程能再访问此临界资源。 18. 同步机构应遵循哪些基本准则?为什么? 答:同步机构应遵循的基本准则是:空闲让进、忙则等待、有限等待、让权等待原因:为实现进程互斥进入自己的临界区。 19. 试从物理概念上说明记录型信号量 wait 和 signal。 答:wait(S):当 S.value0
21、 时,表示目前系统中这类资源还有可用的。执行一次 wait 操作,意味着进程请求一个单位的该类资源,使系统中可供分配的该类资源减少一个,因此描述为 S.value:=S.value-1;当 S.value1) then block(W, L) unlock(W): W:=W-1; if(W0) then wakeup(W, L) 例子: Var W:semaphore:=0; begin repeat lock(W); critical section unlock(W); remainder section until false; end 26试修改下面生产者消费者问题解法中的错诨: 答:
22、 producer: begin repeat producer an item in nextp; wait(mutex); wait(full); /* 应为 wait(empty),而且还应该在 wait(mutex)的前面 */ buffer(in):=nextp; /* 缓冲池数组游标应前移: in:=(in+1) mod n; */ signal(mutex); /* signal(full); */ until false; end consumer: begin repeat wait(mutex); wait(empty); /* 应为 wait(full),而且还应该在 w
23、ait(mutex)的前面 */ nextc:=buffer(out); out:=out+1; /* 考虑循环,应改为 : out:=(out+1) mod n; */ signal(mutex);/* signal(empty); */ consumer item in nextc; until false; end 27试利用记录型信号量写出一个丌会出现死锁的哲学家迚餐问题的算法. 答:Var chopstick:array0,4 of semaphore; 所有信号量均被初始化为 1,第 i 位哲学家的活动可描述为: Repeat Wait(chopsticki); Wait(. ch
24、opstick(i+1) mod 5); Ea.t ; Signal(chopsticki); Signal(chopstick(i+1) mod 5) Ea.t ; Think; 11 Until false; 28在测量控制系统中的数据采集仸务,把所采集的数据送一单缓冲区;计算仸务从该单 缓冲中叏出数据迚行计算.试写出利用信号量机制实现两者共享单缓冲的同步算法。 答: a. Var mutex, empty, full: semaphore:=1, 1, 0; gather: begin repeat gather data in nextp; wait(empty); wait(mute
25、x); buffer:=nextp; signal(mutex); signal(full); until false; end compute: begin repeat wait(full); wait(mutex); nextc:=buffer; signal(mutex); signal(empty); compute data in nextc; until false; end b. Var empty, full: semaphore:=1, 0; gather: begin repeat gather data in nextp; wait(empty); buffer:=ne
26、xtp; signal(full); until false; end compute: begin repeat wait(full); nextc:=buffer; signal(empty); compute data in nextc; until false; end 29画图说明管程由哪几部分组成,为什么要引入条件发量? 答:管程由四部分组成:管程的名称;局部于管程内部的共享数据结构说明;对该数据结构进行操作的一组过程;对局部于管程内部的共享数据设臵初始值的语句; 当一个进程调用了管程,在管程中时被阻塞或挂起,直到阻塞或挂起的原因解除,而在此期间,如果该进程不释放管程,则其它进程无
27、法进入管程,被迫长时间地等待。为了解决这个问题,引入了条件变量 condition。 30如何利用管程来解决生产者不消费者问题? 答:首先建立一个管程,命名为 ProclucerConsumer,包括两个过程: (1)Put(item)过程。生产者利用该过程将自己生产的产品放到缓冲池,用整型变 量 count 表示在缓冲池中已有的产品数目,当 countn 时,表示缓冲池已满,生产者须 等待。 (2)get (item)过程。消费者利用该过程从缓冲池中取出一个产品,当 count0 时,表示缓冲池中已无可取的产品,消费者应等待。 PC 管程可描述如下: type producer-consum
28、er =monitor Var in,out,count:integer; buffer:array0,n-1of item; notfull,notempty:condition; procedure entry dot(item) begin if count=n then not full.wait; buffer(in):=nextp; in:=(in+1)mod n; count:=count+1; if notempty.queue then notempty.signal; end procedure entry get(item) begin if count。下表为该时刻的安
29、全序列表。资源情况进程Work Need Allocation Work+Allocation FinishP0P3P4P1P21 6 2 21 6 5 41 9 8 71 9 9 112 9 9 110 0 1 20 6 5 20 6 5 61 7 5 02 3 5 60 0 3 20 3 3 30 0 1 41 0 0 01 3 5 41 6 5 41 9 8 71 9 9 112 9 9 113 12 14 17truetruetruetruetrue若进程 P2 提出请求 Request(1,2,2,2)后,系统不能将资源分配给它,若分配给进程 P2,系统还剩的资源情况为(0,4,0,
30、0) ,此时系统中的资源将无法满足任何一个进程的资源请求,从而导致系统进入不安全状态,容易引起死锁的发生。第四章第四章 存储器管理存储器管理1. 为什么要配置层次式存储器?这是因为:a.设置多个存储器可以使存储器两端的硬件能并行工作。b.采用多级存储系统,特别是 Cache 技术,这是一种减轻存储器带宽对系统性能影响的最佳结构方案。c.在微处理机内部设置各种缓冲存储器,以减轻对存储器存取的压力。增加 CPU 中寄存器的数量,也可大大缓解对存储器的压力。2. 可采用哪几种方式将程序装入内存?它们分别适用于何种场合?将程序装入内存可采用的方式有:绝对装入方式、重定位装入方式、动态运行时装入方式;绝
31、对装入方式适用于单道程序环境中,重定位装入方式和动态运行时装入方式适用于多道程序环境中。3. 何为静态链接?何谓装入时动态链接和运行时动态链接?a.静态链接是指在程序运行之前,先将各自目标模块及它们所需的库函数,链接成一个完整的装配模块,以后不再拆开的链接方式。b.装入时动态链接是指将用户源程序编译后所得到的一组目标模块,在装入内存时,采用边装入边链接的一种链接方式,即在装入一个目标模块时,若发生一个外部模块调用事件,将引起装入程序去找相应的外部目标模块,把它装入内存中,并修改目标模块中的相对地址。c.运行时动态链接是将对某些模块的链接推迟到程序执行时才进行链接,也就是,在执行过程中,当发现一
32、个被调用模块尚未装入内存时,立即由 OS 去找到该模块并将之装入内存,把它链接到调用者模块上。4. 在进行程序链接时,应完成哪些工作?a.对相对地址进行修改b.变换外部调用符号6. 为什么要引入动态重定位?如何实现?a.程序在运行过程中经常要在内存中移动位置,为了保证这些被移动了的程序还能正常执行,必须对程序和数据的地址加以修改,即重定位。引入重定位的目的就是为了满足程序的这种需要。b.要在不影响指令执行速度的同时实现地址变换,必须有硬件地址变换机构的支持,即须在系统中增设一个重定位寄存器,用它来存放程序在内存中的起始地址。程序在执行时,真正访问的内存地址是相对地址与重定位寄存器中的地址相加而
33、形成的。9. 分区存储管理中常采用哪些分配策略?比较它们的优缺点。分区存储管理中常采用的分配策略有:首次适应算法、循环首次适应算法、最佳适应算法、最坏适应算法。a.首次适应算法的优缺点:保留了高址部分的大空闲区,有利于后到来的大型作业的分配;低址部分不断被划分,留下许多难以利用的、小的空闲区,且每次分区分配查找时都是从低址部分开始,会增加查找时的系统开销。b.循环首次适应算法的优缺点:使内存中的空闲分区分布得更为均匀,减少了查找时的系统开销;缺乏大的空闲分区,从而导致不能装入大型作业。c.最佳适应算法的优缺点:每次分配给文件的都是最适合该文件大小的分区;内存中留下许多难以利用的小的空闲区。d.
34、最坏适应算法的优缺点:给文件分配分区后剩下的的空闲区不至于太小,产生碎片的几率最小,对中小型文件分配分区操作有利;使存储器中缺乏大的空闲区,对大型文件的分区分配不利。10. 在系统中引入对换后可带来哪些好处?能将内存中暂时不运行的进程或暂时不用的程序和数据,换到外存上,以腾出足够的内存空间,把已具备运行条件的进程或进程所需的程序和数据换入内存,从而大大地提高了内存的利用率。12. 在以进程为单位进行对换时,每次是否将整个进程换出?为什么?在以进程为单位进行对换时,并非每次将整个进程换出。这是因为:a.从结构上讲,进程是由程序段、数据段和进程控制块组成的,其中进程控制块总有部分或全部常驻内存,不
35、被换出。b.程序段和数据段可能正被若干进程共享,此时它们也不能被换出。13. 为实现分页存储管理,需要哪些硬件支持?需要有页表机制、地址变换机构的硬件支持。16. 为什么说分段系统较之分页系统更易于实现信息共享和保护?a.对于分页系统,每个页面是分散存储的,为了实现信息共享和保护,则页面之间需要一一对应起来,为此需要建立大量的页表项;b.而对于分段系统,每个段都从 0 开始编址,并采用一段连续的地址空间,这样在实现共享和保护时,只需为所要共享和保护的程序设置一个段表项,将其中的基址与内存地址一一对应起来即可。17. 分页和分段有何区别?a.分页和分段都采用离散分配的方式,且都要通过地址映射机构
36、来实现地址变换,这是它们的共同点;b.对于它们的不同点有三,第一,从功能上看,页是信息的物理单位,分页是为实现离散分配方式,以消减内存的外零头,提高内存的利用率,即满足系统管理的需要,而不是用户的需要;而段是信息的逻辑单位,它含有一组其意义相对完整的信息,目的是为了能更好地满足用户的需要;第二页的大小固定且由系统确定,而段的长度却不固定,决定于用户所编写的程序;第三分页的作业地址空间是一维的,而分段的作业地址空间是二维的。18. 试全面比较连续分配和离散分配方式。a.连续分配是指为一个用户程序分配一个连续的地址空间,包括单一连续分配方式和分区式分配方式,前者将内存分为系统区和用户区,系统区供操
37、作系统使用,用户区供用户使用,是最简单的一种存储方式,但只能用于单用户单任务的操作系统中;分区式分配方式分为固定分区和动态分区,固定分区是最简单的多道程序的存储管理方式,由于每个分区的大小固定,必然会造成存储空间的浪费;动态分区是根据进程的实际需要,动态地为之分配连续的内存空间,常用三种分配算法: 首次适应算法,该法容易留下许多难以利用的小空闲分区,加大查找开销;循环首次适应算法,该算法能使内存中的空闲分区分布均匀,但会致使缺少大的空闲分区;最佳适应算法,该算法也易留下许多难以利用的小空闲区;b.离散分配方式基于将一个进程直接分散地分配到许多不相邻的分区中的思想,分为分页式存储管理,分段存储管
38、理和段页式存储管理. 分页式存储管理旨在提高内存利用率,满足系统管理的需要,分段式存储管理则旨在满足用户(程序员) 的需要,在实现共享和保护方面优于分页式存储管理,而段页式存储管理则是将两者结合起来,取长补短,即具有分段系统便于实现,可共享,易于保护,可动态链接等优点,又能像分页系统那样很好的解决外部碎片的问题,以及为各个分段可离散分配内存等问题,显然是一种比较有效的存储管理方式;c.综上可见,连续分配方式和离散分配方式各有各自的特点,应根据实际情况加以改进和利用. 19. 虚拟存储器有哪些特征?其中最本质的特征是什么?特征:离散性、多次性、对换性、虚拟性; 最本质的特征:离散性;最重要的特征
39、:虚拟性。20. 实现虚拟存储器需要哪些硬件支持?a.对于为实现请求分页存储管理方式的系统,除了需要一台具有一定容量的内存及外存的计算机外,还需要有页表机制,缺页中断机构以及地址变换机构;b.对于为实现请求分段存储管理方式的系统,除了需要一台具有一定容量的内存及外存的计算机外,还需要有段表机制,缺段中断机构以及地址变换机构;21. 实现虚拟存储器需要哪几个关键技术?a.分页和分段都采用离散分配的方式,且都要通过地址映射机构来实现地址变换,这是它们的共同点;25. 在请求分页系统中,通常采用哪种页面分配方式物理块分配策略?三种分配方式:固定分配局部置换、可变分配全局置换、可变分配局部置换。26.
40、 在一个请求分页系统中,采用 FIFO 页面置换算法时,假如一个作业的页面走向为4、3、2、1、4、3、5、4、3、2、1、5,当分配给该作业的物理块数 M 分别为 3 和 4时,试计算在访问过程中所发生的缺页次数和缺页率,并比较所得结果。4 3 2 1 4 3 5 4 3 2 1 54 4 4 1 1 1 5 5 53 3 3 4 4 4 2 22 2 2 3 3 3 14 4 4 4 5 5 5 5 1 13 3 3 3 4 4 4 4 52 2 2 2 3 3 3 31 1 1 1 2 2 2M=3 时,采用 FIFO 页面置换算法的缺页次数为 9 次,缺页率为 75%;M=4 时,采用
41、 FIFO 页面置换算法的缺页次数为 10 次,缺页率为 83%。由此可见,增加分配给作业的内存块数,反而增加了缺页次数,提高了缺页率,这种现象被称为是 Belady 现象。28. 试说明改进型 Clock 置换算法的基本原理。基本原理:在将一个页面换出时,如果该页已被修改过,便须将该页重新写回到磁盘上;但如果该页未被修改过,则不必将它写回磁盘上。在改进型算法中,除需考虑页面的使用情况外,还须再增加一个因素,即置换代价,这样,选择页面换出时,既要是未使用过的页面,又要是未被修改过的页面。15 什么是抖动? 产生抖动的原因是什么?a.抖动(Thrashing)就是指当内存中已无空闲空间而又发生缺
42、页中断时,需要从内存中调出一页程序或数据送磁盘的对换区中,如果算法不适当,刚被换出的页很快被访问,需重新调入,因此需再选一页调出,而此时被换出的页很快又要被访问,因而又需将它调入,如此频繁更换页面,使得系统把大部分时间用在了页面的调进换出M=3M=4上,而几乎不能完成任何有效的工作,我们称这种现象为“抖动“ 。b.产生抖动的原因是由于 CPU 的利用率和多道程序度的对立统一矛盾关系引起的,为了提高 CPU 利用率,可提高多道程序度,但单纯提高多道程序度又会造成缺页率的急剧上升,导致 CPU 的利用率下降,而系统的调度程序又会为了提高 CPU 利用率而继续提高多道程序度,形成恶性循环,我们称这时
43、的进程是处于“抖动“ 状态。第五章第五章 设备管理设备管理3. 什么是字节多路通道?什么是数组选择通道和数组多路通道?a.字节多路通道含有许多非分配型子通道分别连接在低、中速 I/O 设备上,子通道按时间片轮转方式共享主通道,按字节方式进行数据传送。当第一个子通道控制其 I/O 设备完成一个字节的交换后,便立即腾出字节多路通道(主通道),让给第二个子通道使用;当第二个子通道也交换完一个字节后,又依样把主通道让给第三个子通道使用,以此类推。转轮一周后,重又返回由第一个子通道去使用主通道。b.数组选择通道只含有一个分配型子通道,一段时间内只能执行一道通道程序、控制一台设备按数组方式进行数据传送。通
44、道被某台设备占用后,便一直处于独占状态,直至设备数据传输完毕释放该通道,故而通道利用率较低,主要用于连接多台高速设备。c. 数组多路通道是将数组选择通道传输速率高和字节多路通道能使各子通道分时并行操作的优点相结合而形成的一种新通道。其含有多个非分配型子通道分别连接在高、中速 I/O 设备上,子通道按时间片轮转方式共享主通道,按数组方式进行数据传送,因而既具有很高的数据传输速率,又能获得令人满意的通道利用率。4. 如何解决因通道不足而产生的瓶颈问题?解决因通道不足而产生的瓶颈问题的最有效方法是增加设备到主机间的通路而不是增加通道。换言之,就是把一个设备连接到多个控制器上,而一个控制器又连接到多个
45、通道上。这种多通路方式不仅可以解决该瓶颈问题,而且能够提高系统的可靠性,也即不会因为个别通道或控制器的故障而使设备与存储器之间无法建立通路进行数据传输。6. 试说明 I/O 控制发展的主要推动因素是什么?促使 I/O 控制不断发展的几个主要因素如下:a.尽量减少 CPU 对 I/O 控制的干预,把 CPU 从繁杂的 I/O 控制中解脱出来,以便更多地去完成数据处理任务。b.缓和 CPU 的高速性和设备的低速性之间速度不匹配的矛盾,以提高 CPU 的利用率和系统的吞吐量。c.提高 CPU 和 I/O 设备操作的并行程度,使 CPU 和 I/O 设备都处于忙碌状态,从而提高整个系统的资源利用率和系
46、统吞吐量。7. 有哪几种 I/O 控制方式?各适用于何种场合?I/O 控制方式:程序 I/O 方式、中断驱动 I/O 控制方式、DMAI/O 控制方式、I/O 通道控制方式。程序 I/O 方式适用于早期的计算机系统中,并且是无中断的计算机系统;中断驱动 I/O 控制方式是普遍用于现代的计算机系统中;DMA I/O 控制方式适用于 I/O设备为块设备时在和主机进行数据交换的一种 I/O 控制方式;当 I/O 设备和主机进行数据交换是一组数据块时通常采用 I/O 通道控制方式,但此时要求系统必须配置相应的通道及通道控制器。10. 在单缓冲情况下,为什么系统对一块数据的处理时间为 max(C, T)
47、+M ??在块设备输入时,假定从磁盘把一块数据输入到缓冲区的时间为 T;操作系统将缓冲区数据传送给用户区的时间为 M;而 CPU 对这一块数据进行计算得时间为 C。在单缓冲情况下,由于设备的输入操作和 CPU 的处理操作可以并行,所以系统对每一整块数据的处理时间为 max(C, T) + M。11. 为什么在双缓冲情况下,系统对一块数据的处理时间为 max(C, T)?该方式又称缓冲对换方式,在设备输入时,先将数据送入第一缓冲区,装满后便转向第二缓冲区。此时操作系统可以从第一缓冲区移出数据,并送入用户进程。接着由 CPU 对数据进行计算。在双缓冲区中,不仅设备的输入操作和 CPU 的处理操作可
48、以并行,设备的输入操作和数据的传送操作也可以并行,因此耗时大约为 max(C+M,T)。考虑到 M 是内存中数据块的 “搬家”耗时,非常短暂可以省略,因此近似地认为是:max(C,T)15. 为什么要引入设备独立性?如何实现设备独立性?引入设备独立性,可使应用程序独立于具体的物理设备,是设备分配具有灵活性。另外容易实现 I/O 重定向。为了实现设备独立性,必须在设备驱动程序之上设置一层设备独立性软件,用来执行所有 I/O 设备的公用操作,并向用户层软件提供统一接口。关键是系统中必须设置一张逻辑设备表 LUT 用来进行逻辑设备到物理设备的映射,其中每个表目中包含了逻辑设备名、物理设备名和设备驱动
49、程序入口地址三项;当应用程序用逻辑设备名请求分配 I/O 设备时,系统必须为它分配相应的物理设备,并在 LUT 中建立一个表目,以后进程利用该逻辑设备名请求 I/O 操作时,便可从 LUT 中得到物理设备名和驱动程序入口地址。16在考虑到设备的独立性时,应如何分配独占设备?在考虑到设备的独立性时,应按如下步骤来分配独占设备:(1)进程以逻辑设备名提出 I/O 请求。(2)根据逻辑设备表相应表项获得 I/O 请求的逻辑设备对应类型的物理设备在系统设备表中的指针。(3)从指针所指位置起顺序检索系统设备表,直到找到一个属于对应 I/O 请求所用类型、空闲可用且基于设备分配安全性算法验证为安全分配的设备的设备控制表,将对应设备分配给请求进程;如果未找到安全可用的空闲设备,则把请求进程的进程控制块挂到相应类型设备的等待队列上等待唤醒和分配。(4)系统把设备分配给 I/O 请求进程后,再到该设备的设备控制表中找出与其相连接的控制器的控制器控制表,根据其状态字段判断该控制器是否忙碌,若忙则把请求进程的进程控制块挂到该控制器的等待队列上;否则