1、生活垃圾渗沥液处理技术标准条文说明CJJ150-20条文说明目次1 总则403设计水质与水量413.1 设计水质413.2 设计水量424总体设计454.1一般规定454.2工艺流程464.3总体布置475单元设计475.1调节池475.3厌氧生物处理485.4 膜生物反应器(MBR系统)485.5纳滤505.7高级氧化515.8机械蒸发再压缩蒸发技术(MVC/MVR)525.9浸没燃烧蒸发技术(SCE)535.10臭气处理537环境保护与劳动卫生548工程施工与验收551 总则1.0.1本条明确了制定本标准的目的。1.0.2本条规定了本标准的适用范围。生活垃圾处理设施包括填埋场、焚烧厂、中转
2、站等设施,其他生活垃圾综合处理厂可参考使用。1.0.4为提高处理效率,优化运行管理,节约能源,降低工程造价和运行成本,鼓励采用可靠适用的新技术、新工艺、新材料和新设备,但要有成功的工程案例。1.0.5本条文是对渗沥液处理过程与环境保护的基本规定。3 设计水质与水量3.1 设计水质3.1.2生活垃圾填埋场缺少渗沥液水质资料的地区,可参考表1选取。表1国内典型填埋场(调节池)不同年限渗沥液水质范围单位:mg/L(pH除外)类别项目填埋初期渗沥液(5年)填埋中后期渗沥液(5年)封场后渗沥液COD60003000020001000010005000BOD520002000010004000300200
3、0NH3-N6003000800400010004000TP105010501050SS500400050015002001000pH5868693.1.3 对于缺少新建焚烧厂渗沥液水质资料的地区可参考表2。表2 国内垃圾焚烧厂渗沥液典型水质范围单位:mg/L(pH除外)项目CODBOD5NH3-NTPSSpH指标40000800002000040000100020001050700020000573.1.4生活垃圾转运站渗沥液水质确定时应考虑场地冲洗废水的水质对渗沥液系统设计进水水质的影响,当冲洗废水水量较大时,转运站渗沥液水质比焚烧厂渗沥液系统设计进水水质低很多,宜通过实测数据确定。3.1
4、.6对于缺少浓缩液水质资料的地区,可参考表3、4、5、6选取。表3纳滤浓缩液典型水质表单位:mg/L (pH除外)项目CODBOD5NH3-NTN钙离子镁离子总硅pH纳滤浓缩液6000120202003001000506-9表4反渗透(接纳滤出水)浓缩液典型水质表单位:mg/L (pH除外)项目CODBOD5NH3-NTN钙离子镁离子总硅pH反渗透浓缩液100020259004004001506.5-8表5反渗透(接MBR出水)浓缩液典型水质表单位:mg/L (pH除外)项目CODBOD5NH3-NTN钙离子镁离子总硅pH反渗透浓缩液6000200251000120010002006.5-8表
5、6 DTRO(直接处理渗沥液)浓缩液典型水质表单位:mg/L (pH除外)项目CODBOD5NH3-NTN钙离子镁离子总硅pH反渗透浓缩液6000020000600080002000150020006.5-83.2 设计水量3.2.1生活垃圾卫生填埋技术处理技术规范GB50869-2013规定的生活垃圾填埋场渗沥液产生量计算经验公式法计算如下:(1)式中:Q 渗沥液产生量,m3/d;I 降水量,mm/d;注:当计算渗沥液最大日产生量时,取历史最大日降水量;当计算渗沥液日平均产生量时,取多年平均日降水量;当计算渗沥液逐月平均产生量时,取多年逐月平均降雨量。数据充足时,宜按20年的数据计取;数据不
6、足20年时,可按现有全部年数据计取。表7正在填埋作业单元浸出系数C1取值表所在地年降雨量(mm)有机物含量年降雨量800400年降雨量800年降雨量400大于70%0.851.000.750.950.500.75小于等于70%0.700.800.500.700.400.55注:生活垃圾降解程度高,埋深大时C1取上限;生活垃圾降解程度低,埋深小时C1取下限。A1 正在填埋作业区汇水面积,m2;C1 正在填埋作业区浸出系数,宜取0.41.0,具体取值可参考表3-3;C2 已中间覆盖区浸出系数;当采用膜覆盖时宜取,C2宜取(0.20.3)C1;(生活垃圾降解程度低或埋深小时宜取下限;生活垃圾降解程度
7、高或埋深大时宜取上限。)当采用土覆盖时,C2宜取(0.40.6)C1;(若覆盖材料渗透系数较小、整体密封性好、生活垃圾降解程度低及及埋深小时宜取低值;若覆盖材料渗透系数较大、整体密封性较差、生活垃圾降解程度高及埋深大时宜取高值。) A2 已中间覆盖区汇水面积,m2; C3 已终场覆盖区浸出系数,宜取0.10.2;(若覆盖材料渗透系数较小、整体密封性好、生活垃圾降解程度低及埋深小时宜取下限;若覆盖材料渗透系数较大、整体密封性较差、生活垃圾降解程度高及埋深大时宜取上限。) A3 已终场覆盖区汇水面积,m2; C4调节池浸出系数,取0或1.0;(若调节池设置有覆盖系统取0;若调节池未设置覆盖系统取1
8、.0。) A4调节池汇水面积,m2。式中A1、A2、A3随不同的填埋时期取不同值,渗沥液产生量设计值应在最不利情况下计算,即在A1、A2、A3的取值使得Q最大的时候进行计算。如考虑生活管理区污水等其他因素,渗沥液的设计处理规模宜在其产生量的基础上乘以适当系数。生活垃圾卫生填埋场岩土工程技术规范CJJ176-2012规定的生活垃圾填埋场渗沥液产生量计算经验公式法如下:(2)式中:Q渗沥液日均总量(m3/d);I降雨量(mm/d),应采用最近不少于20年的日均降雨量数据;A1填埋作业单元汇水面积(m2);CL1填埋作业单元渗出系数,一般取0.50.8;A2中间覆盖单元汇水面积(m2);CL2中间覆
9、盖单元渗出系数,宜取(0.40.6)C1;A3封场覆盖单元汇水面积(m2);CL3终场覆盖单元渗出系数,0.10.2;WC垃圾初始含水率(%);Md日均填埋规模(t/d);Fc完全降解垃圾田间持水量(%),应符合本规范表3-4的规定。w水的密度(t/m3)表8垃圾初始含水率和田间持水量建议取值(无机物30%时取值)气候区域初始含水率(%)田间持水量(%)春夏秋冬全年湿润456055654560455550603040中等湿润355045653550355040553040干旱203530452035203520403040(无机物30%时取值)气候区域初始含水率(%)田间持水量(%)春夏秋冬全
10、年湿润354530403045304035453040中等湿润203530403550355020353040干旱152530401525102015253040注:1.垃圾无机物含量高或经中转脱水时,初始含水率取低值;2.垃圾降解程度高或埋深大时,田间持水量取低值。3.2.2生活垃圾焚烧发电厂渗沥液产生量季节性波动大,另外与城市发展水平、生活垃圾分类水平、垃圾转运方式等都有较大的关系,通常以丰水期的垃圾渗沥液产生量和卸料平台冲洗水量作为设计依据。气候湿热和夏季多雨地区宜取高值,气候干燥和夏季少雨地区宜取低值;垃圾在垃圾转运站沥水后进焚烧厂的,焚烧厂渗沥液产生量取低值,垃圾在垃圾转运站不沥水直
11、接进焚烧厂的,焚烧厂渗沥液产生量取高值;垃圾在集料坑的停留时间长的取高值,停留时间短的取低值。3.2.3生活垃圾转运站渗沥液产生量与城市发展水平、生活垃圾分类水平、垃圾转运方式,都有较大的关系。气候湿热和夏季多雨地区宜取高值,气候干燥和夏季少雨地区宜取低值;垃圾转运周期长的取高值,转运周期短的取低值。3.3.1填埋场封场后渗沥液处理排放标准应符合生活垃圾卫生填埋场封场技术规范GB51220的有关规定,生活垃圾填埋场、焚烧厂、堆肥厂、厌氧消化处理厂、中转站等垃圾设施配套的渗沥液处理工程的排放标准,应根据垃圾处理设施的不同执行生活垃圾填埋场污染控制标准GB 16889、污水综合排放标准GB8978
12、等国家标准或地方的相关排放标准,具体要求按照项目环境影响评价报告的批复执行。4 总体设计4.1 一般规定4.1.1提倡各种生活垃圾处理设施产生的渗沥液合并处理,一方面可以改善水质,另一方面可以资源共享,发挥设施效益。4.1.2确定渗沥液处理工艺时,前期应对地方渗沥液处理工程相关数据进行调研和评估,为工艺确定提供依据。4.1.3渗沥液水质的特性决定了渗沥液处理不可能采用单一工艺进行处理,必须采用组合处理工艺,组合包括各种方法的组合,也包括同种方法中不同工艺的组合,组合的主体工艺应为生物处理工艺,以达到从环境中去除大部分污染物的目的。4.1.4新建垃圾渗沥液处理系统规模在300m3/d及以上的,宜
13、按照两个及以上系列设计,规模在300m3/d以下可采用单系列设计,改建和扩建系统根据实际情况考虑。主要设备的备用原则。1、 原水提升泵水泵应设备用泵,当工作泵台数不大于4台时,备用泵宜为1台,当工作泵台数不小于5台时,备用泵宜为2台。2、 超滤进水泵、纳滤进水泵、反渗透进水泵通常采用进口泵,设备检修率较低,增加备用泵会增加投资和维护工作,可采用库备。3、 鼓风机房应设置备用风机,工作鼓风机台数在4台以下时,应设1台备用鼓风机;工作台数在4台或4台以上时,应设2台备用鼓风机。鼓风机应按设计配置的最大机组考虑。4、超滤、纳滤、反渗透膜系统通常不考虑备用,但设计时宜考虑一定的富裕系数。4.2工艺流程
14、4.2.1预处理的主要目标是去除氨氮和无机杂质,降低污染物浓度或改善渗沥液后续水质,多采用厌氧生物处理、混凝沉淀等工艺。生物处理单元处理对象主要是可生物降解的有机污染物、氮、磷等渗沥液中的主要污染物,多采用膜生物反应器(MBR)。深度处理的处理对象主要是经生物处理后未去除的难生物降解有机物、溶解盐等,主要目标是排放水质达到国家和地方排放要求,宜采用膜法、高级氧化及吸附法等。其中膜法主要采用纳滤、反渗透等;高级氧化主要采用Fenton试剂氧化法、臭氧氧化法等。深度处理宜以膜法处理为主,并根据处理要求合理选择。4.2.2当采用 “预处理+深度处理”工艺时,要求具备“预处理+生物处理+深度处理”的功
15、能效果,即主要目标是排放水质达到国家和地方排放要求,深度处理多采用两级碟管式反渗透(DTRO)和机械蒸发(MVC/MVR)等。4.2.3 生活垃圾焚烧发电厂及生活垃圾转运站产生的渗沥液为未经发酵的原生液,有机物含量高。COD通常为4000080000mg/L,氨氮通常为10002000mg/L,生化性好,具备良好的生物脱氮条件。因此,该种渗沥液宜采用生物处理为主的处理工艺。4.2.4预处理宜采用混凝沉淀、厌氧生物处理等,特殊情况下也可采用水解酸化、氨吹脱等。当原水COD大于15000mg/L,BOD5/TN大于5时,预处理宜采用厌氧生物处理。4.2.5采用MBR作为垃圾渗沥液生物处理单元时,应
16、最大限度地降解有机污染物及总氮等渗沥液主要污染物。渗沥液MBR系统的排放水质应符合国家和地方排放标准的要求;当MBR系统衔接后续深度处理时,出水水质应达到后续深度处理对进水水质的要求。4.2.7生物处理产水进入纳滤膜之前,须针对胶体、硬度、二氧化硅或结垢成分等采取适当的预处理措施。进入反渗透膜之前,需根据水质情况考虑投加酸或阻垢剂。设计规模应考虑一定的抗冲击能力,以满足不同时期的水量要求,同时运行过程中应考虑有多种冲洗方式,包括定时冲洗、清水冲洗及化学清洗。当渗沥液原水污染物浓度较低,可生化性差的情况下,碟管式反渗透膜亦可直接处理经预处理后的渗沥液原液。4.2.8 纳滤浓缩液中含有大量难生物降
17、解有机物时,可采用高级氧化工艺处理;反渗透浓缩液经过软化预处理后,可选择机械蒸发再压缩工艺处理浓缩液;满足沼气或天然气源的条件下,纳滤或反渗透浓缩液或二次浓缩的浓缩液,可选择浸没燃烧蒸发工艺。4.3总体布置4.3.2 场地标高的确定还需考虑以下因素:1方便生产联系,满足道路运输及排水条件;2减少土(石)方工程量,保持填挖平衡;3防止地下水对建筑物基础和道路路基产生不良影响;4与所在城镇的总体规划相适应;根据以上决定场地标高的因素,并要经过多方案技术经济比较,确定场地最低点的设计标高。4.3.3这种布置方式不仅使其各功能区与主要生产区之间有方便的交通及工艺联系,减少相互间管线连接的长度,降低投产
18、后的运营费用,而且整个处理区组合重点突出,主次分明,各组成要素之间相互依存,相互制约,具有良好的条理性4.3. 8渗沥液处理区如有涉及围墙及挡土墙的设计,按照工业厂区相应标准规范要求设计。5 单元设计5.1调节池5.1.1调节池设置应符合下列要求:1规定了设计调节池的要求,填埋场调节池容积计算方法参考生活垃圾卫生填埋技术规范;2焚烧厂调节池的设置应根据垃圾仓原液输送泵的抽排工况及用地要求等因素综合确定。根据国内设计经验通常为710d;新建生活垃圾转运站的渗沥液调节池有效容积不宜小于4天渗沥液平均产生量,改建生活垃圾转运站的渗沥液调节池可根据实际用地情况适当调整,不宜小于1天渗沥液平均产生量;3
19、为便于调节池清淤检修,调节池宜按照两格并联设计;4调节池中的渗沥液为渗沥液原液,具有恶臭,应该加盖以避免臭味发散并负压收集处理。另外,加盖调节池还可大幅度降低渗沥液污染物浓度,为后续处理设施创造有利条件;5垃圾焚烧厂渗沥液调节池内可根据存储量及停留时间等因素设机械搅拌措施,防止淤泥沉积。5.3厌氧生物处理5.3.3垃圾渗沥液厌氧生物处理系统设计应考虑渗沥液来源及后续处理工艺要求,确定适宜的反应器形式及预处理工艺。进水杂质及SS过高时,设置格栅机等设施,控制进水杂物与SS,防止厌氧系统出现杂物或死泥淤积。厌氧系统应考虑渗沥液污染物浓度较高,停留时间较长,需配备循环系统保证厌氧反应器内渗沥液的上升
20、流速。5.3.4当原水COD浓度为3000050000 mg/L时,COD去除率宜大于60%,当水COD浓度为5000070000 mg/L时,COD去除率宜大于70%。5.4 膜生物反应器(MBR系统)5.4.2本条规定了MBR系统应采用的常规工艺流程,并针对目前渗沥液水质复杂多变,特别是氨氮含量高的情况,提出强化生物处理工艺。生化系统采用两级A/O 的工艺路线,两级均为两条生产线并联运行,也能独立运行或同时运行,有利于水量变化时工艺单元的灵活运行,节省运行费用。渗沥液进人一级反硝化池,池内设置潜水搅拌器,进水与硝化池回流的硝化液充分混合后,在缺氧条件下,反硝化菌利用废水中的碳源把硝化液中的
21、硝态氮反硝化成氮气,从而实现脱氮及有机污染物去除的目的;一级反硝化池出水进入一级硝化池,一级硝化池的主要功能是实现氨氮的硝化反应,硝化液通过硝酸盐回流泵回流至一级反硝化池,同时进人二级反硝化池完成反硝化脱氮过程;渗沥液进入二级反硝化池后,由于在一级生化处理中已经去除了大部分的BOD5,从而导致硝化液中碳源不足,因此在二级反硝化池中投加碳源,保证硝态氮得到充分反硝化,提高总氮的去除率;为保证二级反硝化的进行,考虑到传质不均及效率等因素,该段投加的碳源不能被反硝化菌完全利用,因此二级反硝化池后设置二级硝化池,多余的碳源在此去除。5.4.3规定进水COD的要求,是考虑到系统有机负荷的限值。规定进水B
22、OD5/COD 的比值要求,是考虑到BOD5/COD 比值小于0.3的渗沥液可生化性较差,不适合直接进入生化处理阶段。规定进水氨氮的要求,是考虑到过高的氨氮会导致生化系统运行不正常甚至瘫痪。5.4.4污泥浓度是MBR 处理系统的重要参数,较高的污泥浓度能够有效提高系统的抗冲击负荷,提高污染物处理负荷,减少处理系统的容积,节省投资。但过高的污泥浓度会导致膜通量降低,甚至导致膜压差急剧上升,损坏膜系统。根据国内运行良好的工程实例,MBR处理系统污泥浓度为8000mg/L 15000mg/L时处理效果好且运行稳定。外置的管式超滤膜和内置的聚四氟乙烯(PTFE)膜可以承受较高的污泥浓度。污泥负荷直接表
23、征了MBR 处理系统的生化处理能力。对于由硝化与反硝化组成的MBR生化处理段,其污泥负荷分为COD污泥负荷与NO3-N污泥负荷。相比传统的生化处理工艺,MBR处理系统污泥负荷设定值较低。此条参数主要是根据国内各大设计院的设计案例以及工程运行实例进行规定。剩余污泥产泥系数的确定受到多种因素的影响,包括进水水质、水温度、污泥龄等。进水的SS越低,剩余污泥产泥系数越低;水温度越高(在一定范围内),反应速度越快,剩余污泥产泥系数也越低;渗沥液MBR 处理系统的污泥龄较高,一般在15d25d,这也降低了剩余污泥产泥系数。综合目前国内现有运行良好的工程案例,剩余污泥产泥系数设定为(0.150.3)kgML
24、SS/kgCOD时系统运行稳定并且处理效果较好。水温是影响生化处理系统中微生物活性的重要参数,一般来说反硝化过程的最适宜温度在2040,硝化过程的最适宜温度在2030。 不同温度下反硝化池脱氮速率可按下列公式计算:Kde(T)=Kde251.08T25不同温度下硝化池硝化速率可按按下列公式计算:KN(T)=KN251.10T25式中: T设计温度();Kde2525时脱氮速率,宜为(0.040.13)kgNO3-N/(kgMLSSd);KN2525时硝化速率,宜为(0.020.08)kgNH4+-N/(kgMLSSd);综合来看将MBR 处理系统的水温设定在2035是较为合适的。当渗沥液温度过
25、高时,建议设置冷却系统,确保生化反应的正常进行。5.4.5规定了MBR系统出水水质要求。当MBR系统后续采用不同深度处理工艺时应根据产水水质选取合适的处理工艺。5.4.6计算时S0和Se可分别用硝化池进水和出水化学需氧量代替,但需根据水质的具体情况考虑换算系数。5.4.10本条计算式中0.28为标准状态下(0.1MPa、20)下的每立方米空气中含氧量(kgO2/m3)。5.4.11考虑膜清洗造成的运行时间不足和水质波动性,工程设计选膜面积,一般在计算的基础上增加富裕系数。5.5纳滤5.5.3 当纳滤系统配套浓缩液减量处理工艺时,与主工艺纳滤系统的合并回收率不宜小于95%。纳滤浓缩液减量处理工艺
26、宜选用“两级物料膜”工艺(图1)。纳滤浓缩液一级物料膜渗滤液量的0.51%二级物料膜浓液物料浓液渗滤液量的44.5%后续处理单元焚烧或回收利用混凝处理后填埋场或调节池图1纳滤浓缩液减量化工艺流程框图纳滤浓缩液减量处理工艺主要设计进水水质应符合下列要求:1进水化学需氧量(COD)不宜大于5000 mg/L2进水生化需氧量(BOD5)不宜大于30 mg/L3进水氧化还原电位(ORP)小于200 mv4 pH值宜为5.57.0;纳滤浓缩液减量处理工艺主要设计参数应符合下列要求:1操作压力:0.5-2.5 MPa;2 COD去除率应不小于90%;3一级物料膜提取的高浓度有机浓缩液应为渗沥液总量的0.5
27、-1%,或COD值须达到50000mg/L以上;4二级物料膜再次回收水产生的物料浓缩液量应为渗沥液总量的4-4.5%;5一级物料膜通量宜为(5-20)L/(m2h);二级物料膜通量宜为(7-18)L/(m2h)。5.5.4当原水生化性好,运行管理水平较高时,通常纳滤产水也可以达到表二排放标准。因此,条件允许时,纳滤膜也可以作为深度处理工艺的终端。5.6反渗透5.6.1本条规定了反渗透工艺流程,反渗透工艺流程和集成设备构成基本跟纳滤一样,只是膜元件和具体设备参数不同。6辅助工程本章主要规定了垃圾渗沥液处理设施需要的土建工程、电气及自控工程、水暖工程等辅助工程要求,各专业按其相应专业工程规范,本章
28、只列相应参考标准,不赘述具体条文。5.7高级氧化5.7.1目前常用的高级氧化工艺主要包括Fenton氧化及臭氧氧化技术。二者进水均宜为经过生物处理后的出水。当采用“Fenton氧化+生化”深度处理时,可参考如下的典型工艺流程设计(图2)。生物处理出水出水二级Fenton氧化一级生化一级Fenton氧化出水二级生化图2“Fenton氧化+生化”工艺流程框图当采用“臭氧氧化+生化或吸附工艺”深度处理时,既可直接对渗沥液生化出水进行处理(采用一级或二级处理),也可对渗沥液生化出水经NF膜处理的膜浓缩液进行处理(采用二级或三级处理),具体可参考如下典型工艺流程设计(图3)。一级生化或吸附生物处理出水出
29、水混凝预处理一级臭氧氧化二级臭氧氧化二级生化或吸附吸附出水图3臭氧高级氧化+生化或吸附工艺流程框图5.8机械蒸汽再压缩蒸发技术(MVR/MVC)5.8.1规定机械蒸发再压缩技术处理对象。5.8.2当机械蒸发再压缩蒸发技术处理浓缩液时应设置预处理单元。当机械蒸发再压缩蒸发技术处理浓缩液进水水质波动较大时,宜设置酸/碱洗气设施。当机械蒸发再压缩蒸发技术处理浓缩液出水需达到更高标准时,宜设置深度处理设施。5.8.6渗沥液反渗透浓缩液中溶解性总固体约为3050 g/L,其中主要组分是氯化钠和氯化钾两种。根据氯化钠和氯化钾在不同温度条件下的溶解度,实现两种盐的分段结晶。机械蒸发再压缩蒸发技术用于反渗透浓
30、缩液资源化处理时,产生的工业盐品质应满足下列要求:1氯化钠结晶盐纯度97.5%,白度82,含水率90%,白度82,含水率0.3%,须满足GB/T7118工业氯化钾标准。5.9浸没燃烧蒸发技术(SCE)5.9.1规定浸没燃烧蒸发技术处理对象,工艺运行前端不需进行预处理。5.9.2规定浸没燃烧蒸发技术运行热源,宜采用填埋气等低品质热源。5.10臭气处理5.10.2除臭系统流程框图参下图(图4)。臭气臭气收集系统除臭系统达标排放图4除臭系统流程框图5.10.6几中常见的除臭工艺说明:(1)化学吸收(洗涤)1)化学吸收(洗涤)式除臭系统应包括(但不限于)洗涤设备、洗涤液循环系统、吸收剂投加系统、控制系
31、统、排出液处理系统和排气除雾装置;2)应根据处理设施散发的不同发臭气体选择吸收剂,吸收剂应能有效处理所收集到的臭气,且不产生二次污染;3)吸收塔根据臭气种类设置两级或多级,对不同特性发臭气体使用不同的吸收剂;4)吸收塔填料的比表面积应大于100m2/m3;5)吸收塔空塔气流速度宜为2m/s 3m/s,液气比宜大于1 L /m3;6)吸收塔气流出口应设置除雾器,除雾器对粒径大于25m的雾滴去除率应大于98%;7)与吸收剂接触的设备和管道应采用耐腐蚀的材料。(2)生物除臭1)生物除臭工艺所选微生物宜为多种菌种组成的微生物菌群,且具有安全性、稳定性和对当地环境的适应性。2)生物除臭方式包括生物洗涤、
32、生物滴滤、生物过滤等,工艺选择以生物过滤或与其组合方式为主。3)生物滤池负荷可根据场地条件在100200 m3/(m2h)范围内选择,滤料堆积高度宜为1.5 m 2.0m。4)气体在生物滤池内的设计停留时间应根据臭气浓度大小宜在25s40s范围内进行选择。5)应设置气体加湿和滤料加湿系统,进入生物滤池的含臭气体的相对湿度应大于98%。6)与化学洗涤塔组合时,洗涤塔与生物滤池之间应设气液分离装置,防止洗涤塔中的化学洗涤剂液滴进入生物滤池,影响生物滤池内的生物繁殖。7)生物滤料应具有生物膜易生、耐腐蚀、耐磨损、生物化学稳定性、一定的空隙率及表面粗糙度,并具有较好的表面电性和亲水性,滤料使用寿命宜不
33、小于35年。(3)吸附1)吸附式除臭宜用于臭气浓度较低场合的除臭,也可用于多级除臭的末级除臭;2)吸附塔内设计气流速度不宜超过0.5m/s。3)吸附剂宜选择孔隙结构发达、比表面积大、吸附能力强、机械强度高、易再生的物质。(4)其他除臭其他除臭方式包括等离子除臭、植物液喷淋除臭等。7环境保护与劳动卫生7.1.1制定垃圾渗沥液处理工程污染治理措施前应落实污染源的特征和产生量;执行标准应该按现行的环境保护法规和标准的有关规定执行。7.2.1 规定垃圾渗沥液进出水监测的规定,渗沥液出水通常需要设置的监测仪表包括:流量、温度、pH值、COD、SS等,环境保护部门会根据进水水质和排放水体要求增加一些必要的
34、监测仪表,BOD、总氮仪表价格较高,应慎重选用。7.2.2规定垃圾处理设施渗沥液产生量、排放量应建立检测、计量系统,并应建立日报表和年报表制度。7.3.1 规定渗沥液处理系统产生臭气及生物气必须经过处理后有组织排放。7.3.3 对于各个环节产生的噪声,应按其产生的状况,分别采取有效的控制措施。厂界噪声应符合工业企业厂界噪声标准GB12348的要求,作业车间噪声应符合工业企业设计卫生标准GBZ1的要求。噪声控制措施包括:1应选用低噪声的机械和设备;2合理规划布置总平面,高噪声设备宜集中布置,并利用建筑物和绿化隔离带减弱噪声的影响;3合理布置通风管道,采用正确的结构,防止产生振动和噪声;4对于声源
35、上无法根治的生产噪声,分别按不同情况采取消声、隔振、隔声、吸声等措施,并着重控制声音强高的噪声源。7.4.1垃圾渗沥液处理的职业安全卫生还应符合工业企业设计卫生标准GBZ1、关于生产性建设工程项目职业安全卫生监察的暂行规定的有关规定。8工程施工与验收8.1.1规定垃圾渗沥液处理工程的施工安装单位必须具有相应的资质。8.1.3 施工准备工作包括技术准备和临建设施准备。施工准备过程中应进行质量控制。技术准备包括:图纸会审;建立测量控制网;做好原材料检验工作和钢筋混凝土的试配工作;做好前期各类技术交底工作等。临建设施准备包括:临建搭设要求;临时用水电进行标准计量等;施工准备过程中的质量控制包括:优化
36、施工方案和合理安排施工程序;严格控制进场原材料的质量;合理配备施工机械;采用质量预控措施等。8.1.4 施工单位在工程施工前应制定切实可行的施工组织设计,内容要详细、全面、合理。施工组织设计的主要内容包括:工程概况;施工部署;施工方法、材料、主要机械的供应、质量保证、安全、工期、成本控制的技术组织措施;施工计划、施工总平面布置及周边环境的保护措施等。渗沥液处理工程施工前应由设计单位进行技术交底。工程施工在地下水位较高时应采取相应的排水、抗浮措施。对于北方地区和南方地区,应根据当地气候条件,制定相应的冬季、夏季、雨季、旱季施工措施。8.2 渗沥液处理工程全部按设计要求和质量标准完成后,应及时对整
37、体工程进行验收,验收工作应按城市污水处理厂工程质量验收规范GB50334执行。渗沥液处理流程中有圆筒钢制设备的,施工验收按立式圆筒形钢制焊接储罐施工及验收规范GB 50128执行。生活垃圾渗沥液处理技术标准Technical code for leachate treatment of municipal solid waste目录1总则12术语23设计水质与水量43.1设计水质43.2设计水量43.3排放水质54 总体设计64.1 一般规定64.2 工艺流程64.3 总体布置75 单元设计95.1 调节池95.2 混凝沉淀95.3厌氧生物处理105.4膜生物反应器(MBR)125.5 纳滤1
38、65.6 反渗透185.7高级氧化205.8 机械蒸发再压缩蒸发技术(MVC/MVR)205.9 浸没燃烧蒸发技术(SCE)225.10臭气处理245.11污泥处理256辅助工程266.1建筑工程266.2结构工程266.3电气工程266.4检测与控制工程276.5给水排水和消防工程276.6采暖通风与空气调节工程287环境保护与劳动安全297.1一般规定297.2 环境监测297.3 环境保护297.4 职业卫生与劳动安全308工程施工及验收318.1工程施工318.2工程验收31本标准用词说明32引用标准名录33附:条文说明35XV1 总则1.0.1为贯彻中华人民共和国固体废物污染环境防治
39、法和中华人民共和国水污染防治法,规范生活垃圾渗沥液处理技术,做到保护环境、技术可靠、经济合理,制定本标准。1.0.2本标准适用于各类生活垃圾处理设施产生的渗沥液处理新建、改建及扩建工程。1.0.3生活垃圾渗沥液处理工程设计处理规模和使用年限应根据生活垃圾处理设施建设规模和使用年限等综合确定。1.0.4生活垃圾渗沥液处理工程的建设应在总结生产实践经验和科学试验的基础上,采用成熟可靠的先进技术。提高处理效率,优化运行管理,节约能源,降低工程造价和运行成本。1.0.5生活垃圾渗沥液处理工程建设、运营应与区域生态环境保护相协调,采取有效措施防止对区域土壤、水环境和大气环境的污染。1.0.6生活垃圾渗沥
40、液处理工程的设计、建设等,除应符合本标准外,尚应符合国家现行有关标准的规定。2 术语2.1 渗沥液处理系统 leachate treatment system渗沥液从取水到处理出水排放的各个工艺处理单元的总称,包括预处理、主处理、深度处理和辅助处理等。2.2 渗沥液预处理leachate pre-treatment消减渗沥液中的杂质、氨氮等污染负荷,改善后续工艺单元进水水质的工艺单元,通常采用物理、化学或生物等方法。2.3渗沥液主处理main treatment of leachate主要去除渗沥液中的有机污染物、氮、磷等的工艺单元,通常采用厌氧、缺氧和好氧等生物方法处理。2.4 渗沥液深度处
41、理leachate post-treatment; advanced treatment of leachate去除难以生物降解的有机物、溶解物等的工艺单元,通常采用膜法、高级氧化、蒸发、吸附法等方法处理。2.5 渗沥液辅助处理Leachate auxiliary treatment渗沥液预处理、主处理和深度处理各工艺段中产生的污泥、浓缩液和臭气等二次污染物,处理这些二次污染的工艺单元统称渗沥液辅助处理。2.6 渗沥液浓缩液 concentrated leachate渗沥液经纳滤、反渗透等膜处理或经蒸发处理分离出的含较高浓度难降解有机质和高盐度的浓缩废水。2.7外置式膜生物反应器 side-s
42、tream membrane bioreactor(SSMBR)生物反应器与膜组件相对独立,通过混合液循环泵施加外压使处理水通过膜组件后排出的一种膜生物反应器(MBR)类型。2.8内置式膜生物反应器 submerged membrane bioreactor(SMBR)膜组件浸没在生物反应器内,处理水通过负压抽吸经过膜单元后排出的一种膜生物反应器(MBR)类型。2.9 渗沥液膜处理membrane treatment以膜为载体,运用膜分离手段处理渗沥液的方法。包括纳滤和反渗透等。2.10 淤塞指数(SDI15)由堵塞0.45um微孔滤膜的速率所计算得出的、表征水中细微悬浮固体物含量的指数。2.
43、11 机械蒸汽再压缩蒸发技术mechanical vapor recompression(compression)( MVR/MVC)利用蒸汽压缩机压缩蒸发产生的二次蒸汽,提高二次蒸汽的温度和热量,压缩后的蒸汽进入蒸发器作为热源再次使原液产生蒸发,从而达到不需要外供蒸汽,依靠蒸发器系统自循环来达到蒸发浓缩的一项蒸发技术。2.12 浸没燃烧蒸发(submerged combustion evaporation, SCE)利用气体燃料在液体亚表面增压浸没燃烧,并通过特殊的结构形成超微气泡,超微气泡与浓缩液直接接触蒸发的一种蒸发技术。2.13 产水率(水回收率)water production ra
44、te采用膜系统或蒸发系统处理渗沥液或浓缩液时,产水量与进水总量之百分比。3 设计水质与水量3.1设计水质3.1.1生活垃圾渗沥液设计进水水质参数的确定应根据生活垃圾处理方式的不同,根据实测水质,并结合渗沥液水质变化规律合理选取。3.1.2生活垃圾填埋场渗沥液新建项目设计进水水质应按照同地区同类型工程实际运行监测数据并结合初期渗沥液、中后期渗沥液及封场渗沥液的性质,综合评价选取。3.1.3生活垃圾焚烧厂渗沥液设计进水水质参数的确定,新建项目可参考同类地区焚烧厂渗沥液水质范围合理选取设计值。3.1.4生活垃圾转运站渗沥液设计进水水质参数的确定,新建项目可参考同类地区转运站渗沥液水质范围合理选取设计值,也可参考当地或同类地区焚烧厂渗沥液水质参数。3.1.5生活垃圾渗沥液处理改扩建项目的设计进水水质参数应参照现状设施的实测水质并根据运行年限推测水质变化范围。3.1.6生活垃圾渗沥液浓缩液设计进水水质参数的确定应根据处理方式的不同并结合渗沥液水质变化规律合理选取。3.2设计水量3.2.1 生活垃圾填埋场渗沥液产生量宜采用生活垃圾卫生填埋技术处理技术规范GB