1、1统 计 ( 二 )注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将准 考 证 号 条 形 码 粘 贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目的 答 案 标 号 涂 黑 , 写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 域 内
2、。 写在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。4 考 试 结 束 后 , 请 将 本 试 题 卷 和 答 题 卡 一 并 上 交 。一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1已知 x, y是两个变量,下列四个散点图中, x, y是负相关趋势的是( )A BC D2一组数据中的每一个数据都乘以 2,再减去 80,得到一组新数据,若求得新的数据的平均数是 12,方差是 44,则原来数据的平均数和方差分别是( )A40.6,1.1 B48.8,4.4 C81.2,44.4D
3、78.8,75.63某篮球队甲、乙两名运动员练习罚球,每人练习 10 组,每组罚球 40 个命中个数的茎叶图如右图,则下面结论中错误的一个是( )A甲的极差是 29 B乙的众数是 21C甲罚球命中率比乙高 D甲的中位数是 244某学院 A, B, C 三个专业共有 1200 名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为 120 的样本已知该学院的 A 专业有380 名学生, B 专业有 420 名学生,则在该学院的 C 专业应抽取的学生人数为( )A30 B40 C50 D605在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9
4、.6、9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A9.4,0.484 B9.4,0.016 C9.5,0.04D9.5,0.0166两个变量之间的相关关系是一种( )A确定性关系 B线性关系C非确定性关系 D非线性关系7如果在一次实验中,测得( x, y)的四组数值分别是 A(1,3), B(2,3.8),C(3,5.2), D(4,6),则 y 与 x 之间的回归直线方程是( )A y x1.9 B y1.04 x1.9C 0.95 x1.04 D 1.05 x0.98现要完成下列 3 项抽样调查:从 10 盒酸奶中抽取 3 盒进行食品卫生检查科技报告厅
5、有 32 排,每排有 40 个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请 32 名听众进行座谈东方中学共有 160 名教职工,其中一般教师 120 名,行政人员 16 名,后勤人员24 名为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为 20 的样本较为合理的抽样方法是( )A简单随机抽样,系统抽样,分层抽样B简单随机抽样,分层抽样,系统抽样C系统抽样,简单随机抽样,分层抽样D分层抽样,系统抽样,简单随机抽样29从存放号码分别为 1,2,10 的卡片的盒子中,有放回地取 100 次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7
6、 8 9 10取到的次数 13 8 5 7 6 13 18 10 11 9则取到号码为奇数的频率是( )A0.53 B0.5 C0.47 D0.3710某校对高一新生进行军训,高一(1)班学生 54 人,高一(2)班学生 42 人,现在要用分层抽样的方法,从两个班中抽出部分学生参加 44 方队进行军训成果展示,则(1)班,(2)班分别被抽取的人数是( )A9 人,7 人 B15 人,1 人C8 人,8 人 D12 人,4 人11右图是根据山东统计年鉴 2010中的资料作成的 2000 年至 2009 年我省城镇居民百户家庭人口数的茎叶图图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位
7、数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字从图中可以得到 2000 年至 2009 年我省城镇居民百户家庭人口数的平均数为( )A304.6 B303.6 C302.6 D301.612甲、乙、丙三名射箭运动员在某次测试中各射箭 20 次,三人的测试成绩如表所示:甲的成绩环数 7 8 9 10频数 5 5 5 5乙的成绩环数 7 8 9 10频数 6 4 4 6丙的成绩环数 7 8 9 10频数 4 6 6 41s、 2、 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A 312sB 213sC 3 D二、填空题(本大题共 4 个小题,每小题 5 分,共 2
8、0 分,把正确答案填在题中横线上)13已知一个回归直线方程为 y1.5 x45 1,73,)9(i,则y_14若 1a, 2, 20a这 20 个数据的平均数为 x,方差为 0.21,则 1a,2, , 0, x这 21 个数据的方差为_15从某小学随机抽取 100 名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图) 由图中数据可知 a_若要从身高在120,130),130,140),140,150三组内的学生中,用分层抽样的方法选取 18 人参加一项活动,则从身高在140,150内的学生中选取的人数应为_16某公司有员工 49 人,其中 30 岁以上的员工有 14 人,没超过
9、 30 岁的员工有35 人,为了解员工的健康情况,用分层抽样方法抽一个容量为 7 的样本,其中 30岁以上的员工应抽取_人三、解答题(本大题共 6 个小题,共 70 分,解答应写出文字说明,证明过程或演算步骤)17 (10 分)某产品的广告支出 x(单位:万元)与销售收入 y(单位:万元)之间有下表所对应的数据:广告支出 x(单位:万元) 1 2 3 4销售收入 y(单位:万元) 12 28 42 56(1)画出表中数据的散点图;3(2)求出 y 对 x 的回归直线方程;(3)若广告费为 9 万元,则销售收入约为多少万元?18 (12 分)炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼
10、时间的长短,必须掌握钢水含碳量和冶炼时间的关系如果已测得炉料熔化完毕时,钢水的含碳量 x 与冶炼时间 y(从炉料熔化完毕到出钢的时间)的一列数据如下表所示:x(0.01%)104 180 190 177 147 134 150 191 204 121y(min) 100 200 210 185 155 135 170 205 235 125(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗?(2)求回归直线方程;(3)预测当钢水含碳量为 160 时,应冶炼多少分钟?19 (12 分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图(1)分别求出两人得分的平均数与方差;(
11、2)根据图和上面算得的结果,对两人的训练成绩作出评价20 (12 分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了 10 个家庭,得数据如下:家庭编号 1 2 3 4 5 6 7 8 9 10ix(收入)千元 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8iy(支出)千元 0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.54(1)判断家庭平均收入与月平均生活支出是否相关?(2)若二者线性相关,求回归直线方程21 (12 分)某工厂有工人 1000 名,其中 2
12、50 名工人参加过短期培训(称为 A 类工人) ,另外 750 名工人参加过长期培训(称为 B 类工人) 现用分层抽样方法(按 A 类, B 类分二层)从该工厂的工人中共抽查 100 名工人,调查他们的生产能力(生产能力指一天加工的零件数) (1) A 类工人中和 B 类工人中各抽查多少工人?(2)从 A 类工人中的抽查结果和从 B 类工人中的抽查结果分别如下表 1 和表 2表 1生产能力分组100,110)110,120)120,130)130,140)140,150)人数 4 8 x 5 3表 2生产能力分组 110,120) 120,130) 130,140) 140,150)人数 6
13、y 36 18先确定 x, y,再补全下列频率分布直方图就生产能力而言, A 类工人中个体间的差异程度与 B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图 1: A 类工人生产能力的频率分布直方图图 2: B 类工人生产能力的频率分布直方图分别估计 A 类工人和 B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表) 22 (12 分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了 10 次试验测得的数据如下:零件数 x(个) 10 20 30 40 50 60 70 80 90 1005加
14、工时间 y(分) 62 68 75 81 89 95 102 108 115122(1) y 与 x 是否具有线性相关关系?(2)如果 y 与 x 具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工 200 个零件所用的时间为多少?2018-2019 学 年 必 修 三 第 二 章 训 练 卷统 计 ( 二 ) 答 案一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 【答案】C【解析】由图可知 C 选项中的散点图描述了 y随着 x的增加而减小的变化趋势,故选 C2 【答案】A3 【答案】D【解析】甲的
15、极差是 37829;乙的众数显然是 21;甲的平均数显然高于乙,即 C 成立;甲的中位数应该是 23故选 D22 2424 【答案】B【解析】由题知 C 专业有学生 1200380420400(名),那么 C 专业应抽取的学生数为 120 40 名故选 B4001 2005 【答案】D【解析】去掉一个最高分 9.9 后再去掉一个最低分 8.4,剩余的分值为9.4、9.4、9.6、9.4、9.7求平均值 9.4.694.755 ,代入方差运算公式可知方差为 0.016故选 D6 【答案】C7 【答案】B8 【答案】A【解析】总体较少,宜用简单随机抽样;已分段,宜用系统抽样;各层间差距较大,宜用分
16、层抽样,故选 A9 【答案】A【解析】 10(135618 11)0.53故选 A10 【答案】A【解析】高一(1)班与(2)班共有学生 96 人,现抽出 16 名学生参加方队展示,所以抽取(1)班人数为 169549(人) ,抽取(2)班人数为 169427(人)故选 A11 【答案】B12 【答案】B【解析】 2221nxxsn , 21 2 557859108.573.( 21.)0 4, s同理 2s , 3s , 213s,故选 B二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分,把正确答案填在题中横线上)13 【答案】58.5【解析】回归直线方程为 y1.5 x45
17、经过点( x, y),由 x9,知 y58.514 【答案】0.215 【答案】0.030,3【解析】因 5 个矩形面积之和为 1,即(0.0050.0100.020 a0.035)101,0.0701010 a1, a0.030由于三组内学生数的频率分别为:0.3,0.2,0.1,所以三组内学生的人数分别为 30,20,10因此从140,150内选取的人数为10618316 【答案】2三、解答题(本大题共 6 个小题,共 70 分,解答应写出文字说明,证明过程或演算步骤)17 【答案】 (1)见解析;(2) y 735x2;(3)129.4 万元【解析】 (1)作出的散点图如图所示(2)观察
18、散点图可知各点大致分布在一条直线附近,列出下表:序号 x y x2 xy1 1 12 1 122 2 28 4 563 3 42 9 1264 4 56 16 224 10 138 30 418易得 x 52, y 69,所以 b 41 225694187330iixy,a y bx 735 22故 y 对 x 的回归直线方程为 y 5x2(3)当 x9 时, y 92129.4故当广告费为 9 万元时,销售收入约为 129.4 万元18 【答案】 (1)见解析;(2) y1.267 x30.47;(3)172.25 分钟【解析】 (1)以 x 轴表示含碳量, y 轴表示冶炼时间,可作散点图如
19、图所示:从图中可以看出,各点散布在一条直线附近,即它们线性相关(2)列出下表,并用科学计算器进行计算:i 1 2 3 4 5 6 7 8 9 10xi 104 180 190 177 147 134 150 191 204 121yi 100 200 210 185 155 135 170 205 235 125xiyi10400360003990032745227851809025500391554794015125159.8 , y172,12648ix,123iy,128764ixy设所求的回归直线方程为 y bx a,102211.67iixyb, 30.47所求回归直线方程为 y1.
20、267 x30.47(3)当 x160 时, 1.267160(30.47)172.25即当钢水含碳量为 160 时,应冶炼约 172.25 分钟19 【答案】 (1)见解析;(2)见解析【解析】 (1)由图象可得甲、乙两人五次测试的成绩分别为甲:10 分,13 分,12 分,14 分,16 分;乙:13 分,14 分,12 分,12 分,14 分x甲 13, x乙 13,10 13 12 14 165 13 14 12 12 1452s甲 (1013) 2(1313) 2(1213) 2(1413) 2(1613) 24,152乙 (1313) 2(1413) 2(1213) 2(1213)
21、 2(1413) 20.815(2)由 s甲 乙 可知乙的成绩较稳定从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高20 【答案】 (1)相关;(2) y0.8136 x0.0043【解析】 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系(2) x 10(0.81.11.31.51.51.82.02.22.42.8)1.74,y (0.7 1.01.21.01.31.51.31.72.02.5)1.42,1023.7ix,1027.5ixy, 102210.8136iixyba1.42 1.740.813
22、60.0043,回归方程为 y0.8136 x0.004321 【答案】 (1)25,75;(2)见解析, B 类工人,123,133.8 和 131.1【解析】 (1) A 类工人中和 B 类工人中分别抽查 25 名和 75 名(2)由 48 x5325,得 x5,6 y361875,得 y15频率分布直方图如下:图 1: A 类工人生产能力的频率分布直方图图 2: B 类工人生产能力的频率分布直方图从直方图可以判断: B 类工人中个体间的差异程度更小 Ax 105 115 125 135 145123,425 825 525 525 325B 115 125 135 145133.8,67
23、5 1575 3675 1875x 123 1338131.125100 75100A 类工人生产能力的平均数, B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为 123,133.8 和 131.122 【答案】 (1)有;(2) y0.668 x54.96;(3)189 分钟【解析】 (1)作出如下散点图:由图可知, y 与 x 具有线性相关关系(2)列出下表i 1 2 3 4 5 6 7 8 9 10xi 10 20 30 40 50 60 70 80 90 100yi 62 68 75 81 89 95 102 108 115 122xiyi620 1360 2250
24、 3240 4450 5700 7140 8640 10350 1220055, 91.7,102385ix,10287iy,1059ixy设所求的回归直线方程为 x ,则有y b a 10 222159010.6597388iixyba y x91.70.6685554.96,因此,所求的回归直线方程为 y0.668 x54.96(3)这个回归直线方程的意义是当 x 每增加 1 时, y 的值约增加 0.668,而54.96 是 y 不随 x 变化而变化的部分,因此,当 x200 时, y 的估计值为0.66820054.96188.56189,因此,加工 200 个零件所用的时间约为 189 分钟