1、平安县第一高级中学,李连生,2.1.4空间中直线与直线之间的位置关系,一 复习:平面中两条直线的位置关系,南海万泉河立交桥,六角螺母,二(1) 异面直线的定义:,我们把不同在任何一个平面内的两条直线叫做异面直线。,想一想:怎样通过图形来表示异面直线?,为了表示异面直线a,b不共面的特点,作图时,通常用一个或两个平面衬托。如下图:,异面直线的画法:,A,b,a,b,a,b,a,A1,B1,C1,D1,C,B,D,A,练习:如图:正方体的棱所在的直线中,与直线A1B异面的有哪些?,答案:,D1C1、C1C、CD、,D1D、AD、B1C1,AB,CD,EF,GH这四条线段所在的直线是异面直线的有几对
2、? 相交直线有几对? 平行直线有几对?,想一想:在空间中两条直线的位置关系?,(2)空间两直线的位置关系:,(1)从公共点的数目来看,可分为:,有且只有一个公共点两直线相交,没有公共点,两直线平行,两直线为异面直线,(2)从平面的性质来讲,可分为:,两直线相交,在同一平面内,两直线平行,不在同一平面内两直线为异面直线,三. 空间两平行直线,提出问题:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。在空间中,是否有类似的规律?,公理4:平行于同一条直线的两条直线互相平行。,公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。,公理4作用:判断空间两条直线平行的依据。
3、,ab cb,ac,符号表示:设空间中的三条直线分别为a, b, c,若,想一想:空间中,如果两条直线都与第三条直线垂直,是否也有类似的规律?,空间四边形: 如图,顺次连结不共面的四点A、B、C、D所组成的四边形叫做空间四边形ABCD.,A,B,C,D,相对顶点A与C,B与D的连线AC、BD叫做这个空间四边形的对角线.,三 例题示范,例1: 在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。 求证:四边形EFGH是平行四边形。,分析:,欲证EFGH是一个平行四边形,只需证EHFG且EHFG,E,F,G,H分别是各边中点,连结BD,只需证: EH BD且EH BDFG B
4、D且FG BD,例题示范,例1: 在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。 求证:四边形EFGH是平行四边形。,变式一: 在例2中,如果再加上条件AC=BD,那么四边形EFGH是什么图形?,E,H,F,G,分析:在例题2的基础上我们只需要证明平行四边形的两条邻边相等。,菱形,四 练习反馈:,1. 判断: (1)平行于同一直线的两条直线平行.( ) (2)垂直于同一直线的两条直线平行.( ) (3)过直线外一点,有且只有一条直线与已知直线平行 . ( ) (4)与已知直线平行且距离等于定长的直线只有两条. ( ) (5)若一个角的两边分别与另一个角的两边平行,那
5、么这两个角相等( ) (6)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. ( ),练习反馈:,2选择题(1)“a,b是异面直线”是指 ab=,且a不平行于b; a 平面a,b平面b且ab= a 平面a,b 平面a 不存在平面a,能使a a且b a成立 上述结论中,正确的是 ( ) (A) (B) (C) (D),(2)长方体的一条对角线与长方体的棱所组成的异面直线有 ( )(A)2对 (B)3对 (C)6对 (D)12对,C,C,(3)两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是( )(A)一定是异面直线 (B)一定是相交直线(C)可能
6、是平行直线 (D)可能是异面直线,也可能是相交直线 (4)一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)相交或异面,3两条直线互相垂直,它们一定相交吗?,答:不一定,还可能异面,D,D,同一平面内:,问题:在空间中,如果一个角的两边和另一个角的两边分别平行,那么这两个角相等吗?,方向相同或相反,结果如何?,一组边的方向相同,而另一组边的方向相反,又如何?,等角定理:,空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.,推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.,三、异面直线所
7、成角的定义:,直线a、b是异面直线,经过空间任意一点O,分别引直线a1a,b1b,把直线a1和b1所成的锐角(或直角)叫做异面直线a和b所成的角。,平移法,如果两条异面直线所成的角为直角, 那么就称这两条异面直线垂直。,异面直线a和b所成的角的范围:,强调:1)范围 2)与0的位置无关 ; 3)为了方便点O选取应有利于解决问题,可取特殊点(如a 或 b上);4)找两条异面直线所成的角,要作平行移动(平行线),把两条异面直线所成的角,转化为两条相交直线所成的角.,45o,例2:(1)求直线BA1和CC1所成角的度数。,例2:(2)哪些棱所在直线与直线AA1垂直?,一作(找)、二证、三求,(1)通过直线平移,作出异面直线 所成的角,把空间问题转化为 平面问题。 (2)利用平面几何知识, 求出异面直线所成角的大小。,四、异面直线所成角的求法:,例3:在正方体ABCD-ABCD中,棱长为a, E、F分别是棱AB,BC的中点,求:,异面直线 AD与 EF所成角的大小;,异面直线 BC与 EF所成角的大小;,异面直线 BD与 EF 所成角的大小.,平 移 法,O,G,AC AC EF, OG BD,BD 与EF所成的角 即为AC与OG所成的角,即为AOG或其补角.,再 见!,立体几何,