收藏 分享(赏)

空间解析几何 空间直角坐标系.ppt

上传人:霞霞 文档编号:1397932 上传时间:2018-07-11 格式:PPT 页数:77 大小:2.16MB
下载 相关 举报
空间解析几何 空间直角坐标系.ppt_第1页
第1页 / 共77页
空间解析几何 空间直角坐标系.ppt_第2页
第2页 / 共77页
空间解析几何 空间直角坐标系.ppt_第3页
第3页 / 共77页
空间解析几何 空间直角坐标系.ppt_第4页
第4页 / 共77页
空间解析几何 空间直角坐标系.ppt_第5页
第5页 / 共77页
点击查看更多>>
资源描述

1、,3 空间解析几何,1 空间直角坐标系 2 两矢量和在轴上的投影3 矢量积的分配律的证明 4 混合积的几何意义 5 一般柱面 F(x,y)=0 6 一般柱面 F(y,z)=0 7 椭圆柱面 8 双曲柱面 9 抛物柱面 10 旋转面的方程11 双叶旋转双曲面 12 单叶旋转双曲面 13 旋转锥面 14 旋转抛物面15 环面 16 椭球面 17 椭圆抛物面 18 双曲抛物面 19 双曲面的渐近锥面 20 单叶双曲面是直纹面 21 双曲抛物面是直纹面 22 一般锥面23 空间曲线圆柱螺线 24 空间曲线在坐标面上的投影25 空间曲线作为投影柱面的交线(1)26 空间曲线作为投影柱面的交线(2)27

2、作出平面y=0 , z=0,3x+y =6, 3x+2y =12 和 x+y+z = 6所围成的立体图形,主 目 录( 1 30 ),28,29,30,.,1. 空间直角坐标系,z,y,x,0,三个坐标轴两两垂直,成右手系,.,z,y,x,0,1. 空间直角坐标系,成右手系,三个坐标轴两两垂直,八个卦限,.,x,0,1. 空间直角坐标系,八个卦限,.,1. 空间直角坐标系,x,0,八个卦限,.,1. 空间直角坐标系,x,M (x,y,z),M,x,y,N,z,(x,y,z),点的坐标,0,.,1. 空间直角坐标系,x,0,M,x,y,N,z,(x,y,z),(x,y,z),坐标和点, M,.,

3、1. 空间直角坐标系,x,0,N,M点到坐标面的距离,M点到原点的距离,M点到坐标轴的距离,P,Q,到z轴:,到x轴:,到y轴:,M,(x,y,z),d1,d2,d3,.,.,.,d,.,|z|,.,1. 空间直角坐标系,x,0,M点的对称点,关于xoy面:,(x,y,z) (x,y,-z),关于x轴:,(x,y,z) (x,-y,-z),Q,关于原点:,(x,y,z) (-x,-y,-z),P,(x,y,-z),(x,-y,-z),(-x,-y,-z),M(x,y,z),R,u,A,B,c,两矢量的和在轴上的投影等于投影的和,A,B,c,2. 两矢量和在轴上的投影,A,c,u,A,B,c,B

4、,.,.,两矢量的和在轴上的投影等于投影的和,2. 两矢量和在轴上的投影,引理,c,a,将矢量a一投一转(转900),,证明,引入 ,证毕.,(a+b)c=(a c)+(b c),c0,3. 证明矢量积的分配律:,两矢方向:,一致;,a2,|a2|= |a1|,a2,得a2,(a+b)c=(a c)+(b c),c,b,a,a+b,c0,3. 证明矢量积的分配律:,.,将平行四边形一投一转,(a+b)c=(a c)+(b c),c,b,a,a+b,(a+b)c,ac,由矢量和的平行四边形法则,,得证.,c0,3. 证明矢量积的分配律:,.,.,bc,将平行四边形一投一转,(a+b)c=(a c

5、)+(b c),b,c,a b,a,S=|a b|,h,4. 混合积的几何意义,h,a,c,a b,b,4. 混合积的几何意义,.,h,a,c,a b,b,4. 混合积的几何意义,.,其混合积 abc = 0,三矢 a, b, c共面,因此,,(不含z),N,(x, y, 0),S,曲面S上每一点都满足方程;,曲面S 外的每一点都不满足方程,F(x,y)=0表示母线平行于z 轴的柱面,点N满足方程,故点M满足方程,5. 一般柱面 F(x,y)=0,(不含x),F(y,z)=0表示母线平行于x轴的柱面,6. 一般柱面 F(y, z)=0,a,b,7. 椭圆柱面,y,o,8. 双曲柱面,9. 抛物

6、柱面,曲线 C,C,绕 z轴,10. 旋转面的方程,曲线 C,C,10. 旋转面的方程,y,z,o,绕 z轴,曲线 C,旋转一周得旋转曲面 S,C,S,M,N,z,P,y,z,o,.,f (y1, z1)=0,M(x,y,z),10. 旋转面的方程,., S,绕 z轴,曲线 C,旋转一周得旋转曲面 S,C,S,M,N,z,P,.,.,.,f (y1, z1)=0,M(x,y,z),f (y1, z1)=0,f (y1, z1)=0,10. 旋转面的方程,.,y,z,o, S,这就是旋转面S的方程.,绕 z轴,x,0,11. 双叶旋转双曲面,绕 x 轴一周,x,0,.,绕 x 轴一周,11. 双

7、叶旋转双曲面,x,0,.,11. 双叶旋转双曲面,.,绕 x 轴一周,a,12. 单叶旋转双曲面,上题双曲线,绕 y 轴一周,a,.,上题双曲线,绕 y 轴一周,12. 单叶旋转双曲面,a,.,.,.,12. 单叶旋转双曲面,上题双曲线,绕 y 轴一周,13. 旋转锥面,两条相交直线,绕 x 轴一周,.,两条相交直线,绕 x 轴一周,x,y,o,13. 旋转锥面,x,y,o,z,.,两条相交直线,绕 x 轴一周,得旋转锥面,.,13. 旋转锥面,o,14. 旋转抛物面,抛物线,绕 z 轴一周,o,.,抛物线,绕 z 轴一周,14. 旋转抛物面,y,.,o,x,z,生活中见过这个曲面吗?,.,1

8、4. 旋转抛物面,抛物线,绕 z 轴一周,得旋转抛物面,卫星接收装置,14. 例,.,15.环面,r,R,绕 y轴 旋转所成曲面,15.环面,绕 y轴 旋转所成曲面,y,x,o,.,15.环面,绕 y轴 旋转所成曲面,环面方程,.,生活中见过这个曲面吗?,.,.,救生圈,.,15.环面,截痕法,用z = h截曲面,用y = m截曲面,用x = n截曲面,a,b,c,16. 椭球面,截痕法,用z = a截曲面,用y = b截曲面,用x = c截曲面,17. 椭圆抛物面,截痕法,用z = a截曲面,用y = b截曲面,用x = c截曲面,17. 椭圆抛物面,.,用z = a截曲面,用y = 0截曲

9、面,用x = b截曲面,截痕法,(马鞍面),18. 双曲抛物面,截痕法,.,18. 双曲抛物面,(马鞍面),用z = a截曲面,用y = 0截曲面,用x = b截曲面,截痕法,.,18. 双曲抛物面,(马鞍面),用z = a截曲面,用y = 0截曲面,用x = b截曲面,单叶:,双叶:,.,.,.,在平面上,双曲线有渐进线。 相仿,单叶双曲面和双叶双曲面有渐进锥面。 用z=h去截它们,当|h|无限增大时,双曲面的截口椭圆与它的渐进锥面 的截口椭圆任意接近,即:双曲面和锥面任意接近。,渐进锥面:,19. 双曲面的渐进锥面,直纹面在建筑学上有意义,含两个直母线系,例如,储水塔、电视塔等建筑都有用这

10、种结构的。,.,20. 单叶双曲面是直纹面,含两个直母线系,21. 双曲抛物面是直纹面,n次齐次方程,F(x,y,z)= 0,的图形是以原点为顶点的锥面;,方程 F(x,y,z)= 0是 n次齐次的:,准线,顶点,n次齐次方程,F(x,y,z)= 0.,反之,以原点为顶点的锥面的方程是,锥面是直纹面,t是任意数,22. 一般锥面,23. 空间曲线圆柱螺线,P,同时又在平行于z轴的方向等速地上升。其轨迹就是圆柱螺线。,圆柱面,a,x = y =z =,acos t,bt,M(x,y,z),asin t,t,M,螺线从点P Q,当 t 从 0 2,,叫螺距,N,.,Q,(移动及转动都是等速进行,所

11、以z与t成正比。),点P在圆柱面上等速地绕z轴旋转;,1,.,解,得交线L:,24. 空间曲线在坐标面上的投影,由,.,1,解,L,.,.,.,得交线L:,24. 空间曲线在坐标面上的投影,.,投影柱面,由,L:,( ),25. 空间曲线作为投影柱面的交线(1),消去z,y2 = 4x,y2 = 4x,L:,( ),消去z,(消去x ),25. 空间曲线作为投影柱面的交线(1),.,y2+(z 2)2 = 4,y2+(z 2)2 = 4,y2 = 4x,y2 = 4x,L:,L:,L,转动坐标系,有下页图,( ),转动坐标系,有下页图,.,消去z,(消去x ),.,y2+(z 2)2 = 4,

12、y2 = 4x,y2+(z 2)2 = 4,y2 = 4x,25. 空间曲线作为投影柱面的交线(1),L:,L,y2+(z 2)2 = 4,y2 = 4x (消去z),y 2 + (z 2)2 = 4 (消去x),y2 = 4x,26. 空间曲线作为投影柱面的交线(2),6,6,6,x+y+z=6,3x+y=6,2,27. 作图练习,平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图,6,6,6,x+y+z=6,3x+y=6,2,.,平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图,27. 作图练习,3x

13、+y=6,3x+2y=12,x+y+z=6,.,6,6,6,4,2,平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图,27. 作图练习,3x+y=6,3x+2y=12,x+y+z=6,.,6,6,6,4,2,平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图,27. 作图练习,4,2,x+y+z=6,.,6,6,6,平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图,27. 作图练习,4,2,.,6,6,6,平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图,27. 作图练习,a,a,28. 作图练习,a,a,28. 作图练习,.,a,a,学画草图,28. 作图练习,.,a,1,1,1,y,x,0,29. 作图练习,a,a,a,30. 作图练习,a,a,a,30. 作图练习,.,a,a,a,30. 作图练习,.,a,a,a,30. 作图练习,.,问题:这是个怎样的立体?,这是个七面体,谢谢使用,返回首页,.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报