收藏 分享(赏)

(10.3)--辩论-U10-supplementary3-刘.pdf

上传人:职教中心 文档编号:13705495 上传时间:2022-10-11 格式:PDF 页数:6 大小:499.41KB
下载 相关 举报
(10.3)--辩论-U10-supplementary3-刘.pdf_第1页
第1页 / 共6页
(10.3)--辩论-U10-supplementary3-刘.pdf_第2页
第2页 / 共6页
(10.3)--辩论-U10-supplementary3-刘.pdf_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Supplementary material Listen to this TED debate “Does the world need nuclear energy”, in which Stewart Brand and Mark Z. Jacobson square off over the pros and cons. Can you outline the proposition sides case? Can you identify the parts we have discussed in the unit? If you are to debate as the Prim

2、e Minister for the Opening Government team, how are you going to present your case for the motion “This House Believes that the World Needs Nuclear Energy”? Transcript: 00:12 Chris Anderson: Were having a debate. The debate is over the proposition: What the world needs now is nuclear energy. True or

3、 false? And before we have the debate, Id like to actually take a show of hands - on balance, right now, are you for or against this? So those who are yes, raise your hand. For. Okay, hands down. Those who are against, raise your hands. Okay, Im reading that at about 75 to 25 in favor at the start.

4、Which means were going to take a vote at the end and see how that shifts, if at all. So heres the format: Theyre going to have six minutes each, and then after one little, quick exchange between them, I want two people on each side of this debate in the audience to have 30 seconds to make one short,

5、 crisp, pungent, powerful point. 01:02 So, in favor of the proposition, possibly shockingly, is one of, truly, the founders of the environmental movement, a long-standing TEDster, the founder of the Whole Earth Catalog, someone we all know and love, Stewart Brand. 01:15 Stewart Brand: Whoa. (Applaus

6、e) The saying is that with climate, those who know the most are the most worried. With nuclear, those who know the most are the least worried. A classic example is James Hansen, a NASA climatologist pushing for 350 parts per million carbon dioxide in the atmosphere. He came out with a wonderful book

7、 recently called Storms of My Grandchildren. And Hansen is hard over for nuclear power, as are most climatologists who are engaging this issue seriously. 01:47 This is the design situation: a planet that is facing climate change and is now half urban. Look at the client base for this. Five out of si

8、x of us live in the developing world. We are moving to cities. We are moving up in the world. And we are educating our kids, having fewer kids, basically good news all around. But we move to cities, toward the bright lights, and one of the things that is there that we want, besides jobs, is electric

9、ity. And if it isnt easily gotten, well go ahead and steal it. This is one of the most desired things by poor people all over the world, in the cities and in the countryside. Electricity for cities, at its best, is whats called baseload electricity. Thats where it is on all the time. And so far ther

10、e are only three major sources of that - coal and gas, hydro-electric, which in most places is maxed-out - and nuclear. I would love to have something in the fourth place here, but in terms of constant, clean, scalable energy, solar and wind and the other renewables arent there yet because theyre in

11、constant. Nuclear is and has been for 40 years. 02:59 Now, from an environmental standpoint, the main thing you want to look at is what happens to the waste from nuclear and from coal, the two major sources of electricity. If all of your electricity in your lifetime came from nuclear, the waste from

12、 that lifetime of electricity would go in a Coke can - a pretty heavy Coke can, about two pounds. But one day of coal adds up to one hell of a lot of carbon dioxide in a normal one-gigawatt coal-fired plant. Then what happens to the waste? The nuclear waste typically goes into a dry cask storage out

13、 back of the parking lot at the reactor site because most places dont have underground storage yet. Its just as well, because it can stay where it is. While the carbon dioxide, vast quantities of it, gigatons, goes into the atmosphere where we cant get it back - yet - and where it is causing the pro

14、blems that were most concerned about. So when you add up the greenhouse gases in the lifetime of these various energy sources, nuclear is down there with wind and hydro, below solar and way below, obviously, all the fossil fuels. 04:13 Wind is wonderful; I love wind. I love being around these big wi

15、nd generators. But one of the things were discovering is that wind, like solar, is an actually relatively dilute source of energy. And so it takes a very large footprint on the land, a very large footprint in terms of materials, five to 10 times what youd use for nuclear, and typically to get one gi

16、gawatt of electricity is on the order of 250 square miles of wind farm. In places like Denmark and Germany, theyve maxed out on wind already. Theyve run out of good sites. The power lines are getting overloaded. And you peak out. Likewise, with solar, especially here in California, were discovering

17、that the 80 solar farm schemes that are going forward want to basically bulldoze 1,000 square miles of southern California desert. Well, as an environmentalist, we would rather that didnt happen. Its okay on frapped-out agricultural land. Solars wonderful on rooftops. But out in the landscape, one g

18、igawatt is on the order of 50 square miles of bulldozed desert. 05:23 When you add all these things up - Saul Griffith did the numbers and figured out what would it take to get 13 clean terawatts of energy from wind, solar and biofuels, and that area would be roughly the size of the United States, a

19、n area he refers to as Renewistan. A guy whos added it up all this very well is David Mackay, a physicist in England, and in his wonderful book, Sustainable Energy, among other things, he says, Im not trying to be pro-nuclear. Im just pro-arithmetic. 05:59 In terms of weapons, the best disarmament t

20、ool so far is nuclear energy. We have been taking down the Russian warheads, turning it into electricity. Ten percent of American electricity comes from decommissioned warheads. We havent even started the American stockpile. I think of most interest to a TED audience would be the new generation of r

21、eactors that are very small, down around 10 to 125 megawatts. This is one from Toshiba. Heres one the Russians are already building that floats on a barge. And that would be very interesting in the developing world. Typically, these things are put in the ground. Theyre referred to as nuclear batteri

22、es. Theyre incredibly safe, weapons proliferation-proof and all the rest of it. Here is a commercial version from New Mexico called the Hyperion, and another one from Oregon called NuScale. Babcock & Wilcox that make nuclear reactors, heres an integral fast reactor. Thorium reactor that Nathan M

23、yhrvolds involved in. The governments of the world are going to have to decide that coals need to be made expensive, and these will go ahead. And heres the future. 07:14 CA: Okay. Okay. (Applause) So arguing against, a man whos been at the nitty, gritty heart of the energy debate and the climate cha

24、nge debate for years. In 2000, he discovered that soot was probably the second leading cause of global warming, after CO2. His team have been making detailed calculations of the relative impacts of different energy sources. His first time at TED, possibly a disadvantage - we shall see - from Stanfor

25、d, Professor Mark Jacobson. Good luck. 07:47 Mark Jacobson: Thank you. (Applause) So my premise here is that nuclear energy puts out more carbon dioxide, puts out more air pollutants, enhances mortality more and takes longer to put up than real renewable energy systems, namely wind, solar, geotherma

26、l power, hydro-tidal wave power. And it also enhances nuclear weapons proliferation. So lets start just by looking at the CO2 emissions from the life cycle. CO2e emissions are equivalent emissions of all the greenhouse gases and particles that cause warming and converted to CO2. And if you look, win

27、d and concentrated solar have the lowest CO2 emissions, if you look at the graph. Nuclear - there are two bars here. One is a low estimate, and one is a high estimate. The low estimate is the nuclear energy industry estimate of nuclear. The high is the average of 103 scientific, peer-reviewed studie

28、s. And this is just the CO2 from the life cycle. 08:41 If we look at the delays, it takes between 10 and 19 years to put up a nuclear power plant from planning to operation. This includes about three and a half to six years for a site permit. and another two and a half to four years for a constructi

29、on permit and issue, and then four to nine years for actual construction. And in China, right now, theyre putting up five gigawatts of nuclear. And the average, just for the construction time of these, is 7.1 years on top of any planning times. While youre waiting around for your nuclear, you have t

30、o run the regular electric power grid, which is mostly coal in the United States and around the world. And the chart here shows the difference between the emissions from the regular grid, resulting if you use nuclear, or anything else, versus wind, CSP or photovoltaics. Wind takes about two to five

31、years on average, same as concentrated solar and photovoltaics. So the difference is the opportunity cost of using nuclear versus wind, or something else. So if you add these two together, alone, you can see a separation that nuclear puts out at least nine to 17 times more CO2 equivalent emissions t

32、han wind energy. And this doesnt even account for the footprint on the ground. 09:55 If you look at the air pollution health effects, this is the number of deaths per year in 2020 just from vehicle exhaust. Lets say we converted all the vehicles in the United States to battery electric vehicles, hyd

33、rogen fuel cell vehicles or flex fuel vehicles run on E85. Well, right now in the United States, 50 to 100,000 people die per year from air pollution, and vehicles are about 25,000 of those. In 2020, the number will go down to 15,000 due to improvements. And so, on the right, you see gasoline emissi

34、ons, the death rates of 2020. If you go to corn or cellulosic ethanol, youd actually increase the death rate slightly. If you go to nuclear, you do get a big reduction, but its not as much as with wind and concentrated solar. 10:37 Now if you consider the fact that nuclear weapons proliferation is a

35、ssociated with nuclear energy proliferation, because we know for example, India and Pakistan developed nuclear weapons secretly by enriching uranium in nuclear energy facilities. North Korea did that to some extent. Iran is doing that right now. And Venezuela would be doing it if they started with t

36、heir nuclear energy facilities. If you do a large scale expansion of nuclear energy across the world, and as a result there was just one nuclear bomb created that was used to destroy a city such as Mumbai or some other big city, megacity, the additional death rates due to this averaged over 30 years

37、 and then scaled to the population of the U.S. would be this. So, do we need this? 11:28 The next thing is: What about the footprint? Stewart mentioned the footprint. Actually, the footprint on the ground for wind is by far the smallest of any energy source in the world. That, because the footprint,

38、 as you can see, is just the pole touching the ground. And you can power the entire U.S. vehicle fleet with 73,000 to 145,000 five-megawatt wind turbines. That would take between one and three square kilometers of footprint on the ground, entirely. The spacing is something else. Thats the footprint

39、that is always being confused. People confuse footprint with spacing. As you can see from these pictures, the spacing between can be used for multiple purposes including agricultural land, range land or open space. Over the ocean, its not even land. Now if we look at nuclear - (Laughter) With nuclea

40、r, what do we have? We have facilities around there. You also have a buffer zone thats 17 square kilometers. And you have the uranium mining that you have to deal with. 12:22 Now if we go to the area, lots is worse than nuclear or wind. For example, cellulosic ethanol, to power the entire U.S. vehic

41、le fleet, this is how much land you would need. Thats cellulosic, second generation biofuels from prairie grass. Heres corn ethanol. Its smaller. This is based on ranges from data, but if you look at nuclear, it would be the size of Rhode Island to power the U.S. vehicle fleet. For wind, theres a la

42、rger area, but much smaller footprint. And of course, with wind, you could put it all over the East Coast, offshore theoretically, or you can split it up. And now, if you go back to looking at geothermal, its even smaller than both, and solar is slightly larger than the nuclear spacing, but its stil

43、l pretty small. And this is to power the entire U.S. vehicle fleet. To power the entire world with 50 percent wind, you would need about one percent of world land. 13:14 Matching the reliability, base load is actually irrelevant. We want to match the hour-by-hour power supply. You can do that by com

44、bining renewables. This is from real data in California, looking at wind data and solar data. And it considers just using existing hydro to match the hour-by-hour power demand. Here are the world wind resources. Theres five to 10 times more wind available worldwide than we need for all the world. So

45、 then heres the final ranking. And one last slide I just want to show. This is the choice: You can either have wind or nuclear. If you use wind, you guarantee ice will last. Nuclear, the time lag alone will allow the Arctic to melt and other places to melt more. And we can guarantee a clean, blue sk

46、y or an uncertain future with nuclear power. 14:07 CA: All right. So while theyre having their comebacks on each other - and yours is slightly short because you slightly overran - I need two people from either side. So if youre for this, if youre for nuclear power, put up two hands. If youre against

47、, put up one. And I want two of each for the mics. Now then, you guys have - you have a minute comeback on him to pick up a point he said, challenge it, whatever. 14:35 SB: I think a point of difference were having, Mark, has to do with weapons and energy. These diagrams that show that nuclear is so

48、mehow putting out a lot of greenhouse gases - a lot of those studies include, Well of course war will be inevitable and therefore well have cities burning and stuff like that, which is kind of finessing it a little bit, I think. The reality is that theres, what, 21 nations that have nuclear power? O

49、f those, seven have nuclear weapons. In every case, they got the weapons before they got the nuclear power. There are two nations, North Korea and Israel, that have nuclear weapons and dont have nuclear power at all. The places that we would most like to have really clean energy occur are China, Ind

50、ia, Europe, North America, all of which have sorted out their situation in relation to nuclear weapons. So that leaves a couple of places like Iran, maybe Venezuela, that you would like to have very close surveillance of anything that goes on with fissile stuff. Pushing ahead with nuclear power will

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报