1、7.1二元一次不等式(组) 与简单的线性规划问题,-2-,知识梳理,考点自测,1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的.我们把直线画成虚线以表示区域边界直线.当我们在平面直角坐标系中画不等式Ax+By+C0所表示的平面区域时,此区域应边界直线,则把边界直线画成.(2)因为把直线Ax+By+C=0同一侧的所有点(x,y)代入Ax+By+C,所得的符号都,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的即可判断Ax+By+C0表示的是直线Ax+By+C=0哪一侧的平
2、面区域.(3)由几个不等式组成的不等式组所表示的平面区域是各个不等式所表示的平面区域的公共部分.,平面区域,不包括,包括,实线,相同,符号,-3-,知识梳理,考点自测,2.线性规划的相关概念,线性约束条件,可行解,最大值,最小值,最大值,最小值,-4-,知识梳理,考点自测,1.二元一次不等式表示的平面区域,-5-,知识梳理,考点自测,2.点P1(x1,y1)和P2(x2,y2)位于直线Ax+By+C=0的两侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)0.3.常见目标函数的几何意义(3)z=(x-a)2+(y-b)2:z表示可行域内的点(x,y)和点(a,b)间的距离的平方.,-6-,知识梳理,考点自测,2,3,4,1,5,1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)不等式x-y-10表示的平面区域一定在直线x-y-1=0的上方.()(2)两点(x1,y1),(x2,y2)在直线Ax+By+C=0异侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)0,k=-a0,则目标函数的斜率满足-akAC=2,即-2a0,于是目标函数等价于z=x+2y-4,即转化为简单的线性规划问题,显然当直线经过点B时,目标函数取得最大值,zmax=21.,