1、2.4 正态分布,高二数学 选修2-3,引入,正态分布在统计学中是很重要的分布。我们知道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于0,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以通常感兴趣的是它落在某个区间的概率。离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数(曲线)描述。,复习,100个产品尺寸的频率分布直方图,25.235,25.295,25.355,25.415,25.475,25.535,产品 尺寸(mm),频率组距,复习,200个产品
2、尺寸的频率分布直方图,25.235,25.295,25.355,25.415,25.475,25.535,产品 尺寸(mm),频率组距,复习,样本容量增大时频率分布直方图,频率组距,产品 尺寸(mm),总体密度曲线,复习,产品 尺寸(mm),总体密度曲线,高尔顿板,11,总体密度曲线,0,Y,X,导入,产品尺寸的总体密度曲线就是或近似地是以下函数的图象:,1 、正态曲线的定义:,函数,式中的实数、(0)是参数,分别表示总体的平均数与标准差,称f( x)的图象称为正态曲线,若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X是一个随机变量.X落在区间(a,b的概率为:,2.正态分布的定义:
3、,如果对于任何实数 a0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。,特别地有,我们从上图看到,正态总体在 以外取值的概率只有4.6,在 以外取值的概率只有0.3 。,由于这些概率值很小(一般不超过5 ),通常称这些情况发生为小概率事件。,例4、在某次数学考试中,考生的成绩 服从一个正态分布,即 N(90,100).(1)试求考试成绩 位于区间(70,110)上的概率是多少?(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?,练习:1、已知一次考试共有60名同学参加,考生的成绩X ,据此估计,大约应有57人的分数在下列哪个区间内?( )(90,110 B. (95,125 C. (100,120 D.(105,115,C,2、已知XN (0,1),则X在区间 内取值的概率等于( )A.0.9544 B.0.0456 C.0.9772 D.0.02283、设离散型随机变量XN(0,1),则 = , = .4、若XN(5,1),求P(6X7).,D,0.5,0.9544,