1、第一章 常用逻辑用语,1.1.3 四种命题间的相互关系,回顾,交换原命题的条件和结论,所得的命题是_ 同时否定原命题的条件和结论,所得的命题是_ 交换原命题的条件和结论,并且同时否定,所得的命题是_,逆命题。,否命题。,逆否命题。,原命题,逆命题,否命题,逆否命题,四种命题形式: 原命题: 逆命题: 否命题: 逆否命题:,若 p, 则 q 若 q, 则 p若p, 则q若q, 则p,观察与思考,?,你能说出其中任意两个命题之间的关系吗?,课堂小结,原命题若p则q,逆命题若q则p,否命题若 p则 q,逆否命题若 q则p,互为逆否 同真同假,互为逆否 同真同假,2)原命题:若a=0, 则ab=0。,
2、逆命题:若ab=0, 则a=0。,否命题:若a 0, 则ab0。,逆否命题:若ab0,则a0。,(真),(假),(假),(真),(真),2.四种命题的真假,看下面的例子:,1)原命题:若x=2或x=3, 则x2-5x+6=0。,逆命题:若x2-5x+6=0, 则x=2或x=3。,否命题:若x2且x3, 则x2-5x+60 。,逆否命题:若x2-5x+60,则x2且x3。,(真),(真),(真),3)原命题:若xAB,则x U A UB。,假,假,假,假,四种命题的真假,有且只有下面四种情况:,想一想?,(2) 若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。,由以上三例及总
3、结我们能发现什么?,即 原命题与逆否命题同真假。,原命题的逆命题与否命题同真假。,(1) 原命题为真,则其逆否命题一定为真。但其逆命题、否命题不一定为真。,(两个命题为互逆命题或互否命题,它们的真假性没有关系).,几条结论:,1.判断下列说法是否正确。,1)一个命题的逆命题为真,它的逆否命题不一定为真;,(对),2)一个命题的否命题为真,它的逆命题一定为真。,(对),2.四种命题真假的个数可能为( )个。,答:0个、2个、4个。,如:原命题:若AB=A, 则AB=。,逆命题:若AB=,则AB=A。,否命题:若ABA,则AB。,逆否命题:若AB,则ABA。,(假),(假),(假),(假),3)一
4、个命题的原命题为假,它的逆命题一定为假。,(错),4)一个命题的逆否命题为假,它的否命题为假。,(错),练一练,练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。,(1)若q2,那么q2-p,根据幂函数 的单调性,得,即,所以,因此,可能出现矛盾四种情况:,与题设矛盾;与反设矛盾;与公理、定理矛盾;在证明过程中,推出自相矛盾的结论。,证明:,因为,所以,例 用反证法证明: 如果ab0,那么 .,练 圆的两条不是直径的相交弦不能互相平分。,已知:如图,在O中,弦AB、CD交于P,且AB、CD不是直径.求证:弦AB、CD不被P平分.,证明:,假设弦AB 、CD被P平分,,P点一定不是圆心O,连接OP,根据垂径定理的推论,,有,OPAB, OPCD,即 过点P有两条直线与OP都垂直,,这与垂线性质矛盾,,弦AB、CD不被P平分。,若a2能被2整除,a是整数,求证:a也能被2整除.,证:假设a不能被2整除,则a必为奇数,故可令a=2m+1(m为整数),由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1,此结果表明a2是奇数,这与题中的已知条件(a2能被2整除)相矛盾,a能被2整除.,